Review on the Development Status of Orthotropic Steel Deck's Manufacturing Techniques
-
摘要: 正交异性钢桥面板结构优势明显,是大跨度桥梁的首选桥面板结构,然而正交异性钢桥面板结构疲劳问题突出。近年来,在国家重大工程项目建设的推动下,我国正交异性钢桥面板制造理念和模式不断进步,制造技术装备和工艺水平大幅度提升,为提升正交异性钢桥面板疲劳性能提供了全流程、多维度、专业化的解决方案:在零件下料切割中,通过引入数控激光切割机实现了横肋齿形板的高品质加工;在U肋板单元焊接中采用基于埋弧焊工艺的多头U肋内焊专机、多头U肋外焊专机,实现U肋双面焊缝的优质高效焊接;将基于离线编程和三方向传感技术的焊接机器人用于桥面板立体单元焊接;采用超声相控阵检测技术,实现U肋焊缝内部缺欠的精确识别与检测。
近些年正交异性钢桥面板制造技术的进展主要包括:1)从以手工焊接为主的制造模式发展到以机械化和自动化为主的制造模式,研制了各类自动化制造装备,大幅提升了焊接质量和生产工效,以机器视觉技术为代表的智能化焊接技术已在正交异性钢桥面板制造中得到了应用;2)成功研发了正交异性钢桥面板U肋内焊技术,并在此基础上发展了U肋双面焊工艺技术,从根本上解决了U肋传统单面焊缝焊根处极易疲劳开裂问题,大幅提升了正交异性钢桥面板关键焊缝抗疲劳性能,有力支撑了正交异性钢桥面板结构的进一步发展;3)为解决U肋焊缝内部质量检测问题,将超声相控阵检测技术引入正交异性钢桥面板U肋焊缝的无损检测中,在U肋焊缝质量控制中发挥了重要作用;4)开发了钢桥面板立体单元机器人焊接技术,实现了正交异性钢桥面板U肋和横肋板连接焊缝的自动化焊接,改善了该部位焊缝的抗疲劳性能。通过关键技术研发和推广应用,有效提升了钢桥面板的制造品质和疲劳性能,建立了融合智能化制造技术、高效化焊接技术、先进检测技术的新一代钢桥面板制造技术体系。为此,结合实际工程案例,从制造理念和模式、钢桥面板U肋焊接技术发展及钢桥面板立体单元机器人焊接技术等方面,对正交异性钢桥面板制造技术的发展现状进行总结和评述。Abstract: Orthotropic steel decks(OSDs) have obvious advantages and are the preferred deck structure for long-span bridges. However, the fatigue problem of the OSDs is prominent. In recent years, driven by the construction of national major engineering projects, the manufacturing concept and mode of OSDs in China have made continuous progress, the manufacturing technological equipment and process level have been greatly improved, providing a whole-process, multi-dimensional and professional solution to improve the fatigue performance of OSDs. Computer numerical control laser cutting machine is introduced to realize the high quality machining of transverse rib tooth plate in cutting parts. In the welding of U-rib unit, the special welding machines for U-rib internal and external welds are adopted based on submerged arc welding technology to realize the high quality and efficient welding of U-rib double-sided welds. A welding robot based on off-line programming and three-direction sensing technology is used to weld stereo units of bridge decks. Ultrasonic phased array detection technique is used to achieve accurate identification and detection of internal defects in U-rib welds.
Recent advances in OSDs manufacturing technology include the following:1) From the manual welding-based manufacturing mode to the mechanization and automation-based manufacturing mode, various types of automated manufacturing equipment have been developed, which have greatly improved the welding quality and production efficiency. The intelligent welding technology represented by machine vision technology has been used in the manufacture of OSDs. 2) Successfully developed the U-rib internal welding technology of OSDs and developed the U-rib double-sided welding technology on this basis, which fundamentally solved the problem of fatigue cracking at the root of the traditional single-sided weld of the U-rib, which greatly improves the fatigue resistance of key welds of OSDs, and strongly supports the further development of OSDs. 3) In order to solve the problem of internal quality inspection of U-rib welds, the ultrasonic phased array inspection technology was introduced into the non-destructive testing of U-rib welds of OSDs, which played an important role in the quality control of U-rib welds. 4) The stereo unit robot welding technology of OSDs was developed, which realized the automatic welding of the U-rib and the transverse rib connection weld of OSDs, and improved the fatigue resistance of the weld at this part. Through the research and development, promotion and application of key technologies, the manufacturing quality and fatigue performance of OSDs have been effectively improved, and the new generation technology system of OSDs manufacturing that integrates intelligent manufacturing technology, efficient welding technology and advanced detection technology has been established. In this paper, the development of OSDs manufacturing technology is summarized and commented on the aspects of manufacturing concept and mode, U-rib welding technology development and stereo unit robot welding technology of OSDs. -
[1] 张清华, 卜一之, 李乔.正交异性钢桥面板疲劳问题的研究进展[J].中国公路学报, 2017, 30(2):14-30, 39. [2] 《中国公路学报》编辑部.中国桥梁工程学术研究综述[J].中国公路学报, 2021, 34(2):1-97. [3] 孟凡超, 张清华, 谢红兵, 等.钢桥面板抗疲劳关键技术[M].北京:人民交通出版社, 2018. [4] 陶晓燕.正交异性钢桥面板节段模型疲劳性能试验研究[J].中国铁道科学, 2013, 34(4):22-26. [5] 唐亮, 黄李骥, 刘高, 等.正交异性钢桥面板足尺模型疲劳试验[J].土木工程学报, 2014, 47(3):112-122. [6] Connor R, Fisher J, Gatti W, et al.Manual for design, construction, and maintenance of orthotropic steel deck bridges[R].United States:Federal Highway Administration, 2012. [7] Zhang S H, Shao X D, Cao J H, et al.Fatigue performance of a lightweight composite bridge deck with open ribs[J].Journal of Bridge Engineering, 2016, 21(7).DOI: 10.1061/(ASCE)BE.1943-5592.0000348. [8] 张清华, 崔闯, 卜一之, 等.正交异性钢桥面板足尺节段疲劳模型试验研究[J].土木工程学报, 2015, 48(4):72-83. [9] 张清华, 李俊, 郭亚文, 等.正交异性钢桥面板体系的疲劳破坏模式和抗力评估[J].土木工程学报, 2019, 52(1):75-85. [10] 邵旭东, 曹君辉, 易笃韬, 等.正交异性钢板-薄层RPC组合桥面基本性能研究[J].中国公路学报, 2012, 25(2):40-45. [11] Shao X, Yi D, Huang Z, et al.Basic performance of the composite deck system composed of orthotropic steel deck and ultrathin RPC layer[J].Journal of Bridge Engineering, 2013, 18(5):417-428. [12] Liu Y, Zhang Q, Meng W, et al.Transverse fatigue behaviour of steel-UHPC composite deck with large-size U-ribs[J].Engineering Structures, 2019, 180:388-399. [13] Fu Z, Ji B, Zhang C, et al.Fatigue performance of roof and U-rib weld of orthotropic steel bridge deck with different penetration rates[J].Journal of Bridge Engineering, 2017, 22(6).DOI: 10.1061/(ASCE)BE.1943-5592.0001036. [14] Li M.Fatigue evaluation of rib-to-deck joint in orthotrpic steel bridge decks[D].Kyoto:Kyoto University, 2014. [15] 张华, 阮家顺, 余志强, 等.桥钢箱梁板单元自动化焊接技术研究与应用[J].金属加工(热加工), 2015(16):70-75. [16] 韩小义.港珠澳大桥正交异性钢桥面板制作技术[J].桥梁建设, 2015, 45(5):105-110. [17] 徐向军.机器人在钢结构焊接中的应用[J].金属加工(热加工), 2015(12):28-29. [18] 车平.港珠澳大桥机械化、自动化焊接与切割技术的应用[J].金属加工(热加工), 2015(22):30-32. [19] 车平, 李军平, 邹勇, 等.港珠澳大桥组合梁钢主梁机器人自动焊试验及应用[J].焊接, 2017(10):59-63. [20] 高文博, 张劲文, 苏权科, 等.港珠澳大桥钢结构制造策划与实践[J].钢结构(中英文), 2021, 36(6):1-23. [21] 张华, 宋神友, 阮家顺, 等.机器人焊接技术在钢桥制造中的应用进展[J].金属加工(热加工), 2021(12):1-6. [22] 陈锦, 汤晨宇.U肋埋弧外焊机器人焊接系统及其应用[J].机械工程与自动化, 2021(2):164-166. [23] 丁晓东, 孙伟东.美国旧金山-奥克兰新海湾大桥钢结构制造技术[J].钢结构, 2011, 23(11):54-57. [24] 叶自强, 肖诗祥.钢桥U肋角焊缝全熔透焊接工艺[J].焊接技术, 2018, 47(3):49-52. [25] 马立芬, 庞延波.钢桥梁U肋角焊缝全熔透焊接工艺[J].焊接技术, 2017, 46(6):41-43. [26] 张华, 孙雅洲, 舒先庆, 等.正交异性钢桥面板U肋内焊技术[J].公路, 2018, 63(9):115-120. [27] 罗鹏军, 张清华, 龚代勋.钢桥面板U肋与顶板双面焊连接疲劳性能研究[J].桥梁建设, 2018, 48(2):19-24. [28] 胡可宁, 张后登, 吴繁, 等.伍家岗长江大桥纵肋与顶板细节疲劳性能研究[J].钢结构(中英文), 2021, 36(10):34-41. [29] 李传习, 肖雄, 陈卓异.U肋双侧焊的钢桥面板残余应力数值分析[J].交通运输科学与工程, 2019, 35(2):38-44. [30] 刘红胜, 罗永传, 韩少辉, 等.新型U肋与顶板双面焊接残余应力场的超声冲击调控方法研究[J].钢结构(中英文), 2021, 36(10):25-33. [31] 张清华, 李俊, 袁道云, 等.高疲劳抗力钢桥面板的疲劳问题Ⅰ:模型试验[J].中国公路学报, 2021, 34(3):124-135. [32] 张清华, 袁道云, 王宝洲, 等.纵肋与顶板新型双面焊构造细节疲劳性能研究[J].中国公路学报, 2020, 33(5):79-91. [33] 张华, 阮家顺, 沈俊杰, 等.钢桥面板U肋焊缝抗疲劳设计及焊接新工艺[J].钢结构, 2019, 34(1):82-85. [34] 范军旗.正交异性钢桥面板U肋角焊缝全熔透焊接工艺研究[J].焊接技术, 2020, 49(11):41-45. [35] 裴雪峰, 车平, 冯辉.钢桥面板U肋角焊缝全熔透焊接工艺研究[J].金属加工(热加工), 2021(3):41-44. [36] 张华, 阮家顺, 伍鲲鹏.钢桥梁热轧变截面U肋焊接试验研究[C]//2020年全国桥梁学术会议论文集.北京:人民交通出版社, 2020. [37] 张华, 阮家顺, 万仲恒, 等.港珠澳大桥U肋角焊缝超声相控阵探伤技术[J].无损检测, 2013, 31(5):31-37. [38] 周一亮.U肋角焊缝的超声相控阵检测技术研究[D].哈尔滨:哈尔滨工业大学, 2016. [39] 李冰, 黄春峰, 孙杰.U肋角焊缝超声相控阵检测的影响因素分析[J].无损探伤, 2019, 43(2):23-26, 41. [40] 杨洪志, 刘红亮, 李玉龙.桥面板与U形肋间焊缝熔深检测的实验研究[J].无损探伤, 2017, 41(2):39-41. [41] 陈刚, 汪焮成.U肋全熔透角焊缝超声波相控阵检测方法研究[J].桥梁建设, 2020, 50(6):33-38. [42] 张华, 范泽平, 王磊.我国正交异性钢桥面板U肋焊接技术创新之路[J].金属加工(热加工), 2017(16):46-49.
点击查看大图
计量
- 文章访问数: 634
- HTML全文浏览量: 94
- PDF下载量: 35
- 被引次数: 0