留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷弯型钢结构研究进展

周绪红

周绪红. 冷弯型钢结构研究进展[J]. 钢结构, 2020, 35(1): 1-19. doi: 10.13206/j.gjgSE20010804
引用本文: 周绪红. 冷弯型钢结构研究进展[J]. 钢结构, 2020, 35(1): 1-19. doi: 10.13206/j.gjgSE20010804
Xuhong Zhou. Research Progress on Cold-Formed Steel Structural Framing[J]. STEEL CONSTRUCTION, 2020, 35(1): 1-19. doi: 10.13206/j.gjgSE20010804
Citation: Xuhong Zhou. Research Progress on Cold-Formed Steel Structural Framing[J]. STEEL CONSTRUCTION, 2020, 35(1): 1-19. doi: 10.13206/j.gjgSE20010804

冷弯型钢结构研究进展

doi: 10.13206/j.gjgSE20010804
详细信息
    通讯作者:

    周绪红,Email:zhouxuhong@126.com

Research Progress on Cold-Formed Steel Structural Framing

  • 摘要: 冷弯型钢构件具有重量轻、强度高、易于预制和量产、安装快、可回收利用等优点。冷弯型钢结构体系主要由墙体系统、楼盖系统和屋面系统组成,已在美国、澳大利亚和新西兰等国广泛应用。而我国冷弯型钢结构设计规范尚需完善,加之"人多地少"的国情,发展多高层冷弯型钢结构体系势在必行。通过理论分析和试验研究,对冷弯型钢结构体系进行深入研究,研究方向涵盖冷弯薄壁型钢基本构件和拼合构件的受力性能、组合墙体的抗侧性能、组合楼盖的承载力、刚度和舒适度以及整体房屋的抗震性能,相关研究成果如下:1)采用半能量法深入研究了板组屈曲的相关作用问题,建立了边缘加劲板件有效宽厚比设计方法;揭示了冷弯薄壁型钢轴压柱的破坏特征和力学性能,建立了简支、固支轴压柱畸变屈曲临界荷载的统一分析方法,提出了临界荷载计算理论;修正了澳大利亚标准AS/NZS 4600∶2005和我国标准JGJ 227—2011中畸变屈曲极限承载力的计算公式。2)揭示了双肢拼合冷弯薄壁型钢轴压柱和受弯梁的破坏特征和受力机理,提出了冷弯薄壁型钢拼合截面柱和梁极限承载力的简化计算方法。3)揭示了传统冷弯薄壁型钢组合墙体和冷弯薄壁型钢—钢板剪力墙水平荷载作用下的受力机理、破坏模式和力学性能,建立了冷弯薄壁型钢组合墙体的理论分析方法。4)揭示了冷弯薄壁型钢组合楼盖在竖向荷载、水平荷载及振动激励下的受力机理、破坏模式和力学性能,提出了冷弯薄壁型钢组合楼盖的设计计算方法。5)揭示了冷弯薄壁型钢住宅房屋在地震荷载作用下的破坏特征、动力特性及地震响应,建立了低、多层冷弯薄壁型钢结构体系的有限元分析方法,提出了抗震设计计算方法和抗震构造措施。6)揭示了冷弯薄壁型钢拼合截面柱在火灾下的受力机理、破坏模式和力学性能,建立了理论分析方法、简化力学模型和设计计算理论。
    研究成果已被国内相关设计规范采用,可以用于指导实际工程设计。笔者及团队后续研究工作将聚焦于冷弯薄壁型钢结构多层房屋关键技术及其应用,以推动装配式钢结构房屋在中国的应用。
  • [1] American Iron and Steel Institute. North American specification for the design of cold-formed steel structural members:AISI S100-16[S]. Washington, D.C.:American Iron and Steel Institute, 2016.
    [2] SAI Global Limited. Australian/New Zealand standard:cold-formed steel structures:AS/NZS 4600:2005[S]. Sydney:SAI Global Limited, 2005.
    [3] European Committee for Standarization. Eurocode 3:Design of steel structures:part 1-3:general rules:supplementary rules for cold-formed members and sheeting:BS EN 1993-1-3[S]. Brussels, Belgium:European Committee for Standarization,2006.
    [4] American Iron and Steel Institute. North American standard for cold-formed steel framing-general provisions:AISI S200-12[S]. Washington, D.C.:American Iron and Steel Institute, 2012.
    [5] American Iron and Steel Institute. Standard for cold-formed steel framing-prescriptive method for one and two family dwellings:AISI S230-2015[S]. Washington, D.C.:American Iron and Steel Institute, 2015.
    [6] International Code Council. The international building code:IBC 2018[S]. USA:International Code Council, 2018.
    [7] American Iron and Steel Institute. North American standard for seismic design of cold-formed steel structural systems:AISI S400[S]. Washington, D.C.:American Iron and Steel Institute, 2015.
    [8] Ministry of Construction of the PRC. Technical code of cold-formed thin-wall steel structures:GB 50018-2002[S]. Beijing:China Planning Press, 2002. (in Chinese)
    [9] Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for sow-rise sold-formed thin-walled steel buildings:JGJ 227-2011[S]. Beijing:China Building Industry Press, 2011. (in Chinese)
    [10] Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical stand for cold-formed thin-walled steel multi-storey residential buildings:JGJ/T 421-2018[S]. Beijing:China Building Industry Press, 2018. (in Chinese)
    [11] Kármán T V, Sechler E E, Donnell L H. The strength of thin plates in compression[J]. Transactions of the American Society of Mechanical Engineers, 1932, 54:53-57.
    [12] Winter G. Strength of thin steel compression flanges[J]. Transactions of the American Society of Civil Engineers, 1947, 112(1):527-576.
    [13] Kwon Y B, Hancock G J. Tests of cold-formed channels with local and distortional buckling[J]. Journal of Structural Engineering, 1992, 118(7):1786-1803.
    [14] Hancock G J, Kwon Y B, Bernard E S. Strength design curves for thin-walled sections undergoing distortional buckling[J]. Journal of Constructional Steel Research, 1994, 31(2/3):169-186.
    [15] Schafer B W, Peköz T. Direct strength prediction of cold-formed steel members using numerical elastic buckling solutions[Z]. St. Louis, Missouri:1998:69-76.
    [16] Schafer B W. Local, distortional, and euler buckling of thin-walled columns[J]. Journal of Structural Engineering, 2002, 128(3):289-299.
    [17] Yao X Y, Guo Y L, Li Y Q. Effective width method for distortional buckling design of cold-formed lipped channel sections[J]. Thin-Walled Structures, 2016, 109:344-351.
    [18] Zhou X H, Wang S J. A semi-energy method of buckling analysis of edge-stiffened plates[J]. Journal of Hunan University, 1991, 18(2):11-18. (in Chinese)
    [19] Zhou X H. Elastic buckling solution of edge-stiffened plates[J]. Journal of Hunan University, 1995, 22(6):105-108. (in Chinese)
    [20] Zhou X H, Mo T, Zhou Q S, et al. Study on the plate assembly effects on edge stiffened plate elements in design approach of effective width to thickness ratio[J]. Journal of Building Structures, 2002, 23(3):37-43. (in Chinese)
    [21] Zhou X H, Wang S J. Stability theory and its applications of thin-walled member[M]. Beijing:Science Press, 2009. (in Chinese)
    [22] Zhou X H, Liu Z K, He Z Q. General distortional buckling formulae for both fixed-ended and pinned-ended C-section columns[J]. Thin-Walled Structures, 2015, 94(9):603-611.
    [23] Lau S C W, Hancock G J. Distortional buckling formulas for channel columns[J]. Journal of Structural Engineering, 1987, 113(5):1063-1078.
    [24] Schafer B W. Cold-formed steel behavior and design:analytical and numerical modeling of elements and members with longitudinal stiffeners[D]. New York:Cornell University, 1997.
    [25] He Z Q, Zhou X H. Strength design curves and an effective width formula for cold-formed steel columns with distortional buckling[J]. Thin-Walled Structures, 2014, 79(6):62-70.
    [26] Young B, Silvestre N, Camotim D. Cold-formed steel lipped channel columns influenced by local-distortional interaction:strength and DSM design[J]. Journal of Structural Engineering (ASCE), 2013, 139(6):1059-1074.
    [27] He Z Q, Zhou X H, Liu Z K, et al. Post-buckling behaviour and DSM design of web-stiffened lipped channel columns with distortional and local mode interaction[J]. Thin-Walled Structures, 2014, 84(11):189-203.
    [28] Zhou X H, Chen M. Experimental investigation and finite element analysis of web-stiffened cold-formed lipped channel columns with batten sheets[J]. Thin-Walled Structures, 2018, 125:38-50.
    [29] Wang S J. Torsional-flexural buckling of open thin-walled columns with battens[J]. Thin-Walled Structures, 1985, 3(4):323-341.
    [30] Wang S J. Torsional-flexural buckling of partially closed and open thin-walled beam-columns[J]. Journal of Building Structures, 1993, 14(5):59-68. (in Chinese)
    [31] Li Y L, Li Y Q, Wang S K, et al. Ultimate load-carrying capacity of cold-formed thin-walled columns with built-up box and I section under axial compression[J]. Thin-Walled Structures, 2014, 79:202-217.
    [32] Kenneth G P. An investigation of the effects of fastener spacing in build-up cold-formed steel compression members[D]. Halifax:University of Dalhousie, 2003.
    [33] Young B, Chen J. Design of cold-formed steel built-up closed sections with intermediate stiffeners[J]. Journal of Structural Engineering, 2008, 134:727-737.
    [34] Reyes W, Guzmán A. Evaluation of the slenderness ratio in built-up cold-formed box sections[J]. Journal of Constructional Steel Research, 2011, 67:929-935.
    [35] Lu Y, Zhou T H, Li W C, et al. Experimental investigation and a novel direct strength method for cold-formed built-up I-section columns[J]. Thin-Walled Structures, 2017, 112:125-139.
    [36] Whittle J, Ramseyer C. Buckling capacities of axially loaded, cold-formed, built-up C-channels[J]. Thin-Walled Structures, 2009, 47:190-201.
    [37] Vijayanand S, Anbarasu M. Effect of spacers on ultimate strength and behavior of cold-formed steel built-up columns[J]. Procedia Engineering, 2017, 173:1423-1430.
    [38] Roy K, Mohammadjani C, Lim J B P. Experimental and numerical investigation into the behaviour of face-to-face built-up cold-formed steel channel sections under compression[J]. Thin-Walled Structures, 2019, 134:291-309.
    [39] Fratamico D C, Torabian S, Zhao X, et al. Experiments on the global buckling and collapse of built-up cold-formed steel columns[J]. Journal of Constructional Steel Research, 2018, 144:65-80.
    [40] Georgieva I, Schueremans L, Vandewalle L, et al. Design of built-up cold-formed steel columns according to the direct strength method[J]. Procedia Engineering, 2012, 40(1):119-124.
    [41] Liao F F, Wu H H, Wang R Z, et al. Compression test and analysis of multi-limbs built-up cold-formed steel stub columns[J]. Journal of Constructional Steel Research, 2017, 128:405-415.
    [42] Li F T. Research on axially compressed behavior of double-limbs box section built-up cold-formed steel columns[D]. Xi'an:Chang'an University, 2015. (in Chinese)
    [43] Yuan T T. Experimental and theoretical research on closed-section multi-limbs built-up cold-formed steel columns under axial compression[D]. Xi'an:Chang'an University, 2010. (in Chinese)
    [44] Aerzhaguli. Study on axial compression bearing capacity of multi-limbs built-up cold-formed steel stub columns[D]. Xi'an:Chang'an University, 2011. (in Chinese)
    [45] Craveiro H D, Rodrigues J P C, Laím L. Buckling resistance of axially loaded cold-formed steel columns[J]. Thin-Walled Structures, 2016, 106:358-375.
    [46] Serrette R L. Performance of edge-loaded cold-formed steel built-up box beams[J]. Practice Periodical on Structural Design and Construction, 2004, 9(3):170-174.
    [47] Magnucka-Blandzi E. Effective shaping of cold-formed thin-walled channel beams with double-box flanges in pure bending[J]. Thin-Walled Structures, 2011, 49(1):121-128.
    [48] Li Y L, Li Y Q, Shen Z Y. Investigation on flexural strength of cold-formed thin-walled steel beams with built-up box section[J]. Thin-Walled Structures, 2016, 107:66-79.
    [49] Wang L P, Young B. Behaviour and design of cold-formed steel built-up section beams with different screw arrangements[J]. Thin-Walled Structures, 2018, 131:16-32.
    [50] Xu L, Sultana P, Zhou X H. Flexural strength of cold-formed steel built-up box sections[J]. Thin-Walled Structures, 2009, 47(6/7):807-815.
    [51] Zhou X H, Shi Y. Flexural strength evaluation for cold-formed steel lip-reinforced built-up I-beams[J]. Advances in Structural Engineering, 2011, 14(4):597-612.
    [52] Shi Y, Zhou X H, Gao T T, et al. Research on flexural capacity of cold-formed steel double limbs built-up box beams[J]. Journal of Building Structures, 2015, 36(11):20-28. (in Chinese)
    [53] Zhou X H, Guan Y, Gao T T, et al. Study on flexural capacity of cold-formed steel double-limb built-up I-shape beams[J]. China Civil Engineering Journal, 2016, 49(8):16-27. (in Chinese)
    [54] Lange J,Naujoks B. Behaviour of cold-formed steel shear walls under horizontal and vertical loads[J]. Thin-Walled Structures, 2006, 44:1214-1222.
    [55] DaBreo J, Balh N, Ong-Tone C, et al. Steel sheathed cold-formed steel framed shear walls subjected to lateral and gravity loading[J]. Thin-Walled Structures, 2014, 74:232-245.
    [56] Ye J H, Wang X X, Jia H Y, et al. Cyclic performance of cold-formed steel shear walls sheathed with double-layer wallboards on both sides[J]. Thin-Walled Structures, 2015, 92:146-159.
    [57] Tian H W, Li Y Q, Zhou Y. Theoretical analysis and testing of steel frame with cold-formed steel shear walls with steel sheathing[J]. Journal of Structural Engineering, 2018, 144(7). Doi:10.1061/(ASCE)ST. 1943-541X.0002057.
    [58] Fiorino L, Della Corte G, Landolfo R. Experimental tests on typical screw connections for cold-formed steel housing[J]. Engineering Structures, 2007, 29:1761-1773.
    [59] Serrette R,Peyton D. Strength of screw connections in cold-formed steel construction[J]. Journal of Structural Engineering, 2009, 135(8):951-958.
    [60] Zhou X H, Shi Y, Zhou T H, et al. Study on shear resistance of cold-formed steel stud walls in residential structures[J]. Journal of Building Structures, 2006, 27(3):42-47. (in Chinese)
    [61] Zhou X H, He Y J, Shi Y, et al. Experiment and FE analysis on shear resistance of cold-formed steel stud assembled wall in residential structure[J]. Advanced Steel Construction, 2010, 6(3):914-925.
    [62] Zhou X H, Shi Y, Zhou T H, et al. Experimental study of the shear resistance of cold-formed steel stud walls[J]. China Civil Engineering Journal, 2010, 43(5):38-44. (in Chinese)
    [63] Zhou X H, Yuan X L, Shi Y, et al. Research on nonlinear pinching hysteresis model of sheathed cold-formed thin-walled steel stud walls[J]. Engineering Mechanics, 2012, 29(6):224-233. (in Chinese)
    [64] Kyvelou P, Gardner L, Nethercot D A. Testing and analysis of composite cold-formed steel-wood-based flooring systems[J]. Journal of Structural Engineering, 2017, 143(11). Doi.10.1061/(ASCE)ST.1943-541X.0001885.
    [65] Zhou X H, Li Z, Wang R C, et al. Study on load-carrying capacity of the cold-formed steel joists-OSB composite floor[J]. China Civil Engineering Journal, 2013, 46(9):1-11. (in Chinese)
    [66] Shi Y, Zhou X H, Song K, et al. Study on flexural stiffness of cold-formed thin-walled steel joists-OSB composite floors[J]. Journal of Architecture and Civil Engineering, 2015, 32(6):50-57. (in Chinese)
    [67] Zhou X H, Shi Y, Xu L, et al. A simplified method to evaluate the flexural capacity of lightweight cold-formed steel floor system with oriented strand board subfloor[J]. Thin-Walled Structures, 2019,134:40-51.
    [68] Hanaor A. Tests of composite beams with cold-formed sections[J]. Journal of Constructional Steel Research, 2000, 54(2):245-264.
    [69] Lakkavalli B S, Liu Y. Experimental study of composite cold-formed steel C-section floor joists[J]. Journal of Constructional Steel Research, 2006, 62(10):995-1006.
    [70] Irwan J M, Hanizah A H, Azmib I, et al. Large-scale test of symmetric cold-formed steel (CFS)-concrete composite beams with BTTST enhancement[J]. Journal of Constructional Steel Research, 2011, 67(4):720-726.
    [71] Hsu C T T, Punurai S, Punurai W, et al. New composite beams having cold-formed steel joists and concrete slab[J]. Engineering Structures, 2014, 71:187-200.
    [72] Majdi Y, Hsu C T T, Zarei M. Finite element analysis of new composite floors having cold-formed steel and concrete slab[J]. Engineering Structures, 2014,77:65-83.
    [73] Alhajri T M, Tahir M M, Azimi M, et al. Behavior of pre-cast U-shaped composite beam integrating cold-formed steel with ferro-cement slab[J]. Thin-Walled Structures, 2016, 102:18-29.
    [74] Zhou X H, Jia Z W. Experimental study on flexural capacity of cold-formed steel joists and concrete composite floor[J]. Journal of Building Structures, 2010,31(7):13-22. (in Chinese)
    [75] Shi Y, Zhou X H, Guan Y, et al. Experimental study on flexural performance of C-shaped cold-formed thin-walled steel-gypsum based self-leveling mortar composite beam[J]. Journal of Building Structures, 2018, 39(9):112-119. (in Chinese)
    [76] NAHB Research Center. Innovative residential floor construction:horizontal diaphragm values for cold-formed steel framing[R].U. S. Department of Housing and Urban Development, Upper Marlboro, MD, 1999.
    [77] Nikolaidou V, Latreille P, Lignos D G, et al. Seismic performance characterization of wood-sheathed and cold-formed steel framed floor and roof diaphragm structures[J]. Journal of Structural Engineering, 2018, 144(2). Doi: 10.1061/(ASCE)ST.1943-541X.0001962.
    [78] Xu L. Floor vibration in lightweight cold-formed steel framing[J]. Advances in Structural Engineering, 2011, 14(4):659-672.
    [79] Zhang S G, Xu L, Qin J W. Vibration of lightweight steel floor systems with occupants:modeling, formulation and dynamic properties[J]. Engineering Structures, 2017, 147:652-665.
    [80] Zhang S G, Xu L. Determination of equivalent rigidities of cold-formed steel floor systems for vibration analysis, part I:theory[J]. Thin-Walled Structures, 2018, 132:25-35.
    [81] Zhang S G, Xu L, Yu C. Determination of equivalent rigidities of cold-formed steel floor systems for vibration analysis, part II:evaluation of the fundamental frequency[J]. Thin-Walled Structures, 2018, 132:1-15.
    [82] Zhou X H, Gao T T, Shi Y. Experimental study on static deflection and vibration behavior of cold-formed steel OSB composite floor[J]. Engineering Mechanics, 2014, 31(5):211-217. (in Chinese)
    [83] Jia Z W, Zhou X H. Study on fundamental frequency of cold-formed steel concrete floor[J]. Engineering Mechanics, 2010, 49(3):469-473. (in Chinese)
    [84] Zhou X H, He Y J, Jia Z W, et al. Experimental study on vibration behavior of cold-formed steel concrete composite floor[J]. Advanced Steel Construction, 2011, 7(3):302-312.
    [85] Guan Y, Zhou X H, Yao X M, et al. Vibration of cold-formed steel floors with a steel form deck and gypsum-based self-leveling underlayment[J]. Advances in Structural Engineering, 2019, 22:2741-2754.
    [86] Li Y Q, Shen Z Y, Yao X Y, et al. Experimental investigation and design method research on low-rise cold-formed thin-walled steel framing buildings[J]. Journal of Structural Engineering, 2013, 139(5):818-836.
    [87] Peterman K D, Stehman M J J, Buonopane S G, et al. Seismic performance of full-scale cold-formed steel buildings[C]//Tenth U.S. National Conference on Earthquake Engineering. Anchorage, Alaska:2014.
    [88] Huang Z G, Su M, He B K, et al. Shaking table test on seismic behaviors of three-story cold-formed thin-walled steel residential buildings[J]. China Civil Engineering Journal, 2011, 44(2):72-81. (in Chinese)
    [89] Shi Y, Zhou X H, Liu L P, et al. Shaking table test on prefabricated light steel structure popular science building[J]. Journal of Building Structures, 2019, 40(2):98-107. (in Chinese)
    [90] Shi Y, Zhou X H, Nie S F, et al. Seismic dynamic response analysis for cold-formed steel framing system of mid-rise residential building[J]. Earthquake Resistant Engineering and Retrofitting, 2011, 33(5):7-26. (in Chinese)
    [91] Zhou X H, Guan Y, Shi Y. Seismic performance analysis of multi-story cold-formed thin-walled steel structure residential building[J]. Progress in Steel Building Structures, 2017, 19(6):10-15. (in Chinese)
    [92] Chen J, Young B. Experimental investigation of cold-formed steel material at elevated temperatures[J]. Thin-Walled Structures, 2007, 45:96-110.
    [93] Gunalan S, Heva Y B, Mahendran M. Local buckling studies of cold-formed steel compression members at elevated temperatures[J]. Journal of Constructional Steel Research, 2015, 108:31-45.
    [94] Feng M, Wang Y C, Davies J M. Structural behavior of cold-formed thin-walled short steel channel columns at elevated temperatures, part 1:experiments[J]. Thin-Walled Structures, 2003, 41:543-70.
    [95] Craveiro H D, Rodrigues J P C, Laím L. Cold-formed steel columns made with open cross-sections subjected to fire[J]. Thin-Walled Structures, 2014, 85:1-14.
    [96] Ye J H, Feng R Q, Chen W, et al. Behavior of cold-formed steel wall stud with sheathing subjected to compression[J]. Journal of Constructional Steel Research, 2015, 116(1):79-91.
    [97] Yang J J, Wang W Y. Shi Y, et al. Experimental study on fire resistance of cold-formed steel built-up box columns[J]. Thin-Walled Structures, 2020, 147. Doi: org/10.1016/j.tws.2019.106564.
    [98] European Committee for Standardization. Eurocode 3:Design of steel structures, part1-2:general rules, structural fire design:EN 1993-1.2:2005[S]. Brussels, Belgium:European Committee for Standardizaiton, 2005.
  • [1] 张爱林, 刘学春, 牟俊霖, 张艳霞.  北京大兴国际机场航站楼大跨度钢结构C1区抗震性能模型试验研究, 钢结构. doi: 10.13206/j.gjgSE20010803
    [2] 周焕廷, 秦晗, 薛伟杰, 伍先兴, 张苏鹏.  波纹腹板组合梁抗火性能参数分析, 钢结构. doi: 10.13206/j.gjgS19102901
    [3] 芦华, 赵宝成.  双钢板内填混凝土T形短肢剪力墙框架结构抗震性能研究, 钢结构. doi: 10.13206/j.gjg.201904005
    [4] 朱梓健, 李俞瑜, 魏木旺, 胡新丽.  新型装配式钢板组合剪力墙轴压受力性能分析, 钢结构. doi: 10.13206/j.gjg.201811015
    [5] 王春刚, 李宁, 张壮南.  刚性斜撑对冷弯薄壁型钢结构住宅体系抗震性能的影响研究, 钢结构. doi: 10.13206/j.gjg.201712009
    [6] 孔丹丹, 崔巍, 祁炳轩, 赵欣.  小高层钢网格盒式-剪力墙组合结构体系抗震性能分析, 钢结构. doi: 10.13206/j.gjg.201705006
    [7] 张淑云, 赵帅辉.  不同节点连接方式下钢板剪力墙抗震性能研究, 钢结构. doi: 10.13206/j.gjg.201607005
    [8] 司徒俊, 陈麟, 吴珊瑚, 周云.  钢管混凝土框架-钢板剪力墙核心筒结构性能分析, 钢结构. doi: 10.13206/j.gjg.201503001
    [9] 王先铁, 刘立达, 田黎敏, 贺博, 贾贵强, 李婷婷.  方钢管混凝土框架-薄钢板剪力墙抗震性能试验研究, 钢结构. doi: 10.13206/j.gjg.201512001
    [10] 陈永昌, 李建中.  基于性态设计的抗弯钢框架与钢框架-钢板剪力墙结构性能对比分析, 钢结构. doi: 10.13206/j.gjg.201509004
    [11] 温秋平, 董事尔, 雍承鑫, 吕恒富.  绕弱轴纯弯的冷弯薄壁型钢构件畸变屈曲性能研究, 钢结构. doi: 10.13206/j.gjg201406003
    [12] 费建伟, 陆晓明.  C型钢板剪力墙截面特性分析, 钢结构. doi: 10.13206/j.gjg201410009
    [13] 刘春, 郝际平, 黄育琪, 钟炜辉, 于金光.  半刚性框架-大高宽比钢板剪力墙抗震性能研究, 钢结构. doi: 10.13206/j.gjg201402002
    [14] 宁子健, 郝际平, 于金光, 钟炜辉, 白睿.  无粘结十字加劲钢板剪力墙结构抗剪性能分析, 钢结构. doi: 10.13206/j.gjg201307003
    [15] 武建辉, 邵晓华, 梁庞.  带钢连梁混合双肢剪力墙结构抗震性能参数分析, 钢结构. doi: 10.13206/j.gjg201303002
    [16] 张青云, 郝际平, 白睿, 崔阳阳, 黄育琪.  铝合金板剪力墙抗震性能研究, 钢结构. doi: 10.13206/j.gjg201309004
    [17] 崔阳阳, 郝际平, 黄育琪.  双肢钢板剪力墙抗震性能分析, 钢结构. doi: 10.13206/j.gjg201309003
    [18] 黄育琪, 郝际平, 崔阳阳, 白睿.  低屈服点钢板剪力墙抗震性能研究, 钢结构. doi: 10.13206/j.gjg201210001
    [19] 沈江元, 于安林.  内填钢板剪力墙中心支撑钢框架的抗震性能研究, 钢结构. doi: 10.13206/j.gjg200908002
    [20] 常永平, 杨林.  薄钢板剪力墙抗震性能有限元分析, 钢结构. doi: 10.13206/j.gjg200708005
  • 加载中
计量
  • 文章访问数:  117
  • HTML全文浏览量:  12
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-26
  • 修回日期:  2020-01-17

目录

    /

    返回文章
    返回