留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2020年  第35卷  第1期

显示方式:
冷弯型钢结构研究进展
周绪红
2020, 35(1): 1-19. doi: 10.13206/j.gjgSE20010804
摘要:
冷弯型钢构件具有重量轻、强度高、易于预制和量产、安装快、可回收利用等优点。冷弯型钢结构体系主要由墙体系统、楼盖系统和屋面系统组成,已在美国、澳大利亚和新西兰等国广泛应用。而我国冷弯型钢结构设计规范尚需完善,加之"人多地少"的国情,发展多高层冷弯型钢结构体系势在必行。通过理论分析和试验研究,对冷弯型钢结构体系进行深入研究,研究方向涵盖冷弯薄壁型钢基本构件和拼合构件的受力性能、组合墙体的抗侧性能、组合楼盖的承载力、刚度和舒适度以及整体房屋的抗震性能,相关研究成果如下:1)采用半能量法深入研究了板组屈曲的相关作用问题,建立了边缘加劲板件有效宽厚比设计方法;揭示了冷弯薄壁型钢轴压柱的破坏特征和力学性能,建立了简支、固支轴压柱畸变屈曲临界荷载的统一分析方法,提出了临界荷载计算理论;修正了澳大利亚标准AS/NZS 4600∶2005和我国标准JGJ 227—2011中畸变屈曲极限承载力的计算公式。2)揭示了双肢拼合冷弯薄壁型钢轴压柱和受弯梁的破坏特征和受力机理,提出了冷弯薄壁型钢拼合截面柱和梁极限承载力的简化计算方法。3)揭示了传统冷弯薄壁型钢组合墙体和冷弯薄壁型钢—钢板剪力墙水平荷载作用下的受力机理、破坏模式和力学性能,建立了冷弯薄壁型钢组合墙体的理论分析方法。4)揭示了冷弯薄壁型钢组合楼盖在竖向荷载、水平荷载及振动激励下的受力机理、破坏模式和力学性能,提出了冷弯薄壁型钢组合楼盖的设计计算方法。5)揭示了冷弯薄壁型钢住宅房屋在地震荷载作用下的破坏特征、动力特性及地震响应,建立了低、多层冷弯薄壁型钢结构体系的有限元分析方法,提出了抗震设计计算方法和抗震构造措施。6)揭示了冷弯薄壁型钢拼合截面柱在火灾下的受力机理、破坏模式和力学性能,建立了理论分析方法、简化力学模型和设计计算理论。
研究成果已被国内相关设计规范采用,可以用于指导实际工程设计。笔者及团队后续研究工作将聚焦于冷弯薄壁型钢结构多层房屋关键技术及其应用,以推动装配式钢结构房屋在中国的应用。
钢-混凝土组合结构在海洋工程中的应用研究
聂建国
2020, 35(1): 20-33. doi: 10.13206/j.gjgSE19112601
摘要:
海洋工程建设是我国海洋强国战略实施的重要基础和保障。相比陆地工程,海洋工程面临更加复杂苛刻的建造环境和条件,其设计、建造、施工难度通常更大,因而对结构工程提出了新的挑战。钢-混凝土组合结构由于充分利用钢材和混凝土各自性能优势,扬长避短,优化组合,具有显著的性能优势和综合经济效益,在海洋工程中拥有广阔的应用前景。本文从跨海桥梁、海底沉管隧道和海上浮体平台三方面综述了清华大学组合结构研究团队近年来在海洋工程组合结构研发和应用方面的工作:1)提出了新型抗拔不抗剪连接技术,并与传统支座升降、预应力、施工工序优化等技术结合,形成跨海连续组合梁桥负弯矩综合抗裂技术,与现有预应力抗裂方法相比具有显著的施工和运维成本优势,与混凝土结构相比具有明显的抗裂性能优势。这一新技术将极大提升结构的耐久性,已经在大连湾跨海大桥的结构设计中得到应用,为组合结构跨海桥梁的推广应用提供了有效的技术支撑。2)研发了适用于跨海多塔斜拉桥的新型双钢板-混凝土组合桥塔,从界面连接和结构整体受力性能两个维度开展研究。结果表明,其在开孔板连接件的作用下可以实现钢与混凝土的协同工作,与纯钢结构和混凝土结构桥塔相比有更高的承载能力、刚度和延性。同时钢板可兼作混凝土模板,提高施工效率,混凝土对钢壳的约束作用也解决了纯钢结构易局部失稳的问题。新型组合桥塔已在南京长江五桥工程中得到应用,刚度、承载力等关键性能指标的显著优势有助于新型组合结构桥塔在未来跨海多塔斜拉桥工程中得到进一步的推广与应用。3)提出了适用于海底沉管隧道的隔舱式双钢板-混凝土组合结构,揭示了其抗弯、抗剪和型钢连接件性能,提出了相应的设计方法。结果表明,相对于传统钢筋混凝土结构,组合结构尺寸小,承载能力强,抗震适应性好。双钢板既可作为混凝土模板,也可起到受力与防水的多重作用。除此以外,该结构施工便捷,尺寸不受加工设备限制,预制厂地要求低。该成果已在深中通道沉管隧道段得到应用,是未来跨海隧道的重要发展方向。4)研发了海上超大型钢-混凝土组合结构漂浮平台,将其应用于海上超大型浮式平台的建设,基于水弹性响应及结构强度分析,对大型钢-混凝土组合箱式浮体平台进行了案例设计和分析。结果表明,其可在提高结构防火、抗爆、抗冲击性能的基础上,增强构件的稳定性及耐久性,显著减小结构用钢量,同时组合浮式平台不用设置加劲肋,设计和施工便捷,维护成本低,具有良好的发展前景。研究与实践表明,组合结构由于其灵活多样的结构形式,即使面对海洋工程复杂苛刻的荷载环境条件和使用功能需求,也能发挥其性能优势,解决工程难题。本文所提出的新型组合结构体系具有较为显著的性能优势,取得了令人满意的综合经济效益,为海洋工程建设提供了崭新的思路和选择,有力地推动了组合结构在海洋工程中的应用。目前,组合结构在海洋工程中的应用仍处于起步阶段,尚需在复杂荷载响应分析、高性能新材料应用、结构形式多样性和适用性等方面进一步开展深入研究。
日本钢桥的历史和技术发展综述
藤野陽三, Dionysius Siringoringo
2020, 35(1): 34-58. doi: 10.13206/j.gjgSE19112604
摘要:
在日本,由于钢材具有良好的抗震性能、成熟的施工和制造技术,成本竞争力以及在跨越能力方面的优势,从而广泛用于桥梁结构。钢桥约占公路桥梁总数的38.3%。本文对日本的钢桥历史和技术发展进行了综述,主要包含结构分析、材料、标准的结构设计以及检测维护等四个方面。
日本钢桥的建造历史可以追溯到1868年。早期建造的桥梁没有统一的设计标准,第一部钢桥设计标准于1939年起草。该标准规定,日本的公路桥分为国道桥梁和县道桥梁两级,标准车辆荷载分别为13 t和9 t。自1950年以来,钢铁生产和焊接技术的发展取得了显著进步,并且设计和施工规范也定期更新以适应新技术的发展。日本在1960年进入了基础设施的大规模建设时期,主要是因为1964年的东京奥运会。在此期间,建造了现代斜拉桥和悬索桥,并开始进行本州四国联络桥的技术研究。此外,开始建设东海道新干线、首都高速公路、名神高速公路和东名高速公路等交通基础设施。钢桥结构相关的材料、分析、设计和施工技术得到了迅速发展和进步。2000年以后,钢桥的发展主要集中于降低建设成本、改善全寿命周期的设计、施工和维护等方面。
日本钢桥研发的最初驱动力是在广阔而复杂的的地形条件下提供可靠的基础设施,以支持经济增长。在材料方面,钢桥的建设需求促进了高性能钢、高强度钢丝和高强螺栓的发展。另一个值得注意的驱动力是地震和台风等灾难造成的基础设施损失。抗震和抗风工程领域的需求推动了高质量钢材的生产以及钢桥安全性和可维修性的研究。大跨径钢桥的桥塔、主梁和索等对风敏感,因此开发了相关的风洞试验和分析技术。自1995年兵库县南部地震以来,钢桥的抗震、隔震以及抗震改造等技术一直稳步发展。在研究和开发之后,更新了设计指南,从而推进钢桥设计和建造的标准化。
近些年,随着钢桥桥龄逐步增大,其维护逐步成为管理的重点。在钢桥防锈蚀方面,已经研发和应用了钢桥涂装、除湿系统等技术。随着桥龄、车流量和车辆载重的增长,钢桥的疲劳问题也逐步出现。为了解决该问题,开发了疲劳裂纹检测和维修技术等。在钢桥检测和维护领域,许多新兴的技术也得到了应用,例如基于无人机的桥梁检测、基于电磁技术的无损检测、混凝土桥面板的雷达探测等。
经过数十年的研究和实践,可以认为钢桥的技术和开发已经成熟。如今仍然存在两个挑战,第一个是开发更有效的结构体系和施工技术以降低成本。第二个是维护现有的钢桥,使其在整个使用寿命中都能有效地发挥作用。
张弦拱桁架结构基于模态参数的损伤识别试验
曾滨, 周臻, 许庆, 张庆芳, 赵俊
2020, 35(1): 70-84. doi: 10.13206/j.gjgSE19112603
摘要:
张弦桁架结构是是由上部刚性拱桁架与下部柔性拉索通过中部撑杆组合而成的一种自平衡体系,具有受力合理、承载能力高、造型轻盈、跨度大等优点,被广泛应用到大跨钢屋盖结构中。但张弦桁架结构规模大、服役期限长,所处环境状况复杂,受到的荷载作用具有随机性,发生损伤的潜在危险性较大。此类结构一旦出现损伤会对结构的正常使用产生影响,甚至可能引起连续倒塌,因此研究张弦桁架结构在运营期的损伤识别具有重要的现实意义。但张弦梁结构中存在拉索、撑杆和桁架等不同类型杆件,受力机理更加复杂,其损伤识别与常规桥梁式结构或多高层建筑结构存在明显差异,目前针对张弦桁架结构的损伤识别尤其试验研究很少。因此,针对张弦桁架结构基于模态参数的损伤识别方法开展试验研究。
通过对某火车站顶棚结构进行缩尺简化,设计制作了两榀张弦桁架试验模型。两榀试验模型结构尺寸相同,模型总长6 m,矢高0.4 m,垂度0.4 m,上部采用倒三角立体桁架,每两个节点之间由四角锥基本单元构成,结构中部均匀布置5根对称的圆钢管撑杆,下部布置直径8 mm的钢丝绳拉索,并施加2 kN预应力;试验模型一端为固定铰支座,另一端为滑动铰支座,并在结构两侧设置刚架作为受压桁架侧向支撑。两榀试验模型构件截面尺寸不同,模型1相对于模型2杆件截面尺寸较小;荷载施加情况不同,模型1未施加外荷载,模型2在模型上弦杆布置质量块模拟结构正常使用状态的荷载。试验采用不同截面尺寸杆件替换正常杆件的方法来模拟结构损伤,即通过降低截面刚度的方法来模拟杆件损伤,根据杆件截面积丧失程度定义损伤程度。试验设计了弦杆单损伤、多损伤、索撑损伤等不同程度以及不同位置的损伤工况,通过动力检测获取试验各工况前三阶模态参数:采用单点拾振、多点激励的方式进行试验,即将加速度传感器安装在桁架上弦杆件的4号节点处,然后用力锤依次对1~14号节点进行锤击,每个节点锤击激励1 min,通过动态信号采集仪采集加速度信号;根据不同工况替换相应损伤杆件,依次采集加速度信号;接着利用TSTMP模态分析软件处理加速信号,获取张弦桁架每个工况的频率与振型等模态数据,以用于之后的损伤识别分析。
张弦桁架结构相对复杂,杆件繁多,可能发生损伤的部位较多,单一损伤识别方法无法一次检测出结构各部分的健康状态。因此将张弦桁架结构分为上部刚性桁架与索撑体系两部分,针对各组成部分的特点,采用基于振动模态参数的组合识别方法对张弦桁架试验结果进行分析:上部刚性桁架对结构整体频率影响较小且杆件连续,运用曲率模态差和模态柔度差曲率对其进行损伤识别;下部索撑体系杆件相对独立且单元数量相对较少,通过选取正则化频率变化率建立索撑体系频率指纹库的方法对其进行损伤识别。
曲率模态差是从结构各阶模态振型入手,对结构的振型进行差分得到模态曲率,再通过计算结构损伤前后曲率模态的变化得到。模态柔度差曲率是从结构的柔度矩阵入手,由损伤前后结构的各阶振型和频率共同得到结构柔度矩阵差,再对其对角元素差分得到。上部刚性桁架进行损伤识别时,根据结构损伤前后的模态数据计算绘制曲率模态差和模态柔度差曲率曲线,曲线突变最大处判定为桁架杆件损伤位置。正则化频率变化率是从结构各阶频率入手,计算结构损伤前后的频率变化率并对其正则化得到。由于其仅是损伤位置的函数,与损伤程度无关,因此建立频率指纹库时仅需考虑每个构件的一种损伤工况,减小了样本量。索撑体系进行损伤识别时,首先建立索撑体系频率指纹库,即预先假定各种损伤工况并依据结构理论模型进行有限元分析,计算得到对应的正则化频率变化率,从而建立频率指纹库;再由实测得到的结构固有频率,计算某工况下的正则化频率变化率指标,与频率指纹库进行对比,两者最接近处判定为索撑体系损伤位置。
采用张弦桁架的组合损伤识别方法分析试验数据,结果表明:1)基于前三阶频率的正则化频率变化率指标可以有效识别索撑体系的损伤。但由于索撑单元均具有对称性,因此正则化频率变化率指标无法判断对称单元的损伤情况,需要进一步验证。2)曲率模态差法和模态柔度差曲率法均能够较好地识别上部刚性桁架结构的单损伤和多损伤,但其对不同位置杆件的损伤识别效果略有不同。由于下弦杆直接与撑杆相连,受撑杆影响较上弦杆大,因此曲率模态差法和模态柔度差曲率法对上弦杆的识别效果优于下弦杆。3)曲率模态差法和模态柔度差曲率法均可以通过曲线定性判断上部刚性桁架杆件的损伤程度,损伤程度越大,曲线突变程度也越大。另外,越高阶曲线突变程度差距越小,因此应利用低阶模态数据定性判断损伤程度。4)与曲率模态差法相比,模态柔度差曲率曲线在非损伤位置突变小,曲线更稳定,受非损伤位置的干扰较少,识别效果更好。基于越多阶模态数据获得的模态柔度差曲率,其曲线在损伤位置发生的突变越明显,且基于前三阶模态数据得到的模态柔度差曲率完全可以满足损伤识别的精度要求。另外,越高阶振型数据得到的曲率模态差曲线突变越大,但其受干扰也越大,一般运用前两阶曲率模态差曲线可以得到较好的损伤识别效果。