留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直接分析法在连续倒塌中的应用

丁智霞 刘耀鹏 杜左雷 陈绍礼

丁智霞, 刘耀鹏, 杜左雷, 陈绍礼. 直接分析法在连续倒塌中的应用[J]. 钢结构, 2020, 35(2): 13-28. doi: 10.13206/j.gjgSE20010801
引用本文: 丁智霞, 刘耀鹏, 杜左雷, 陈绍礼. 直接分析法在连续倒塌中的应用[J]. 钢结构, 2020, 35(2): 13-28. doi: 10.13206/j.gjgSE20010801
Zhixia Ding, Yaopeng Liu, Zuolei Du, Siulai Chan. THE APPLICATION OF DIRECT ANALYSIS METHOD IN PROGRESSIVE COLLAPSE[J]. STEEL CONSTRUCTION, 2020, 35(2): 13-28. doi: 10.13206/j.gjgSE20010801
Citation: Zhixia Ding, Yaopeng Liu, Zuolei Du, Siulai Chan. THE APPLICATION OF DIRECT ANALYSIS METHOD IN PROGRESSIVE COLLAPSE[J]. STEEL CONSTRUCTION, 2020, 35(2): 13-28. doi: 10.13206/j.gjgSE20010801

直接分析法在连续倒塌中的应用

doi: 10.13206/j.gjgSE20010801
基金项目: 

香港特别行政区政府创新及科技基金(ITS/059/16FP)。

详细信息
    作者简介:

    丁智霞,女,1993年出生,博士研究生。

    通讯作者:

    刘耀鹏,yaopeng.liu@connect.polyu.hk

THE APPLICATION OF DIRECT ANALYSIS METHOD IN PROGRESSIVE COLLAPSE

  • 摘要: 结构连续性倒塌分析中的核心问题主要有材料非线性、初始缺陷、动力效应和悬链线效应。结构的抗连续性倒塌性能设计验算主要采用构件拆除法,将关键竖向承载力构件拆除后检验结构的响应。结构整体分析可采用线性静力分析、非线性静力分析和非线性动力分析三种方法。采用基于非线性静力分析的直接分析法,在分析中直接考虑对结构响应有影响的因素,如材料非线性、初始几何缺陷、残余应力、节点连接刚度等,以整个结构体系为对象进行抗连续性倒塌分析。基于NIDA软件,通过一个算例体现了GSA和UFC规范中的构件拆除法的设计过程,并与传统的线性静力分析结果作比较。
  • [1]
    [2] U. S. General Service Administration. Alternate path analysis and design guidelines for progressive collapse resistance[S]. Washington, D. C.:GSA, 2013.
    [3] U. S. General Service Administration. Alternate path analysis and design guidelines for progressive collapse resistance[S]. Washington D. C.:GSA, 2013.
    [4] Department of Defense. Unified Facilities Criteria:Design of Structures to Resist Progressive Collapse[S]. Washington, D. C.:DoD, 2010.
    [5] Department of Defense. Unified facilities criteria:design of structures to resist progressive collapse[S]. Washington D. C.:DoD, 2010.
    [6] U. S. General Service Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects[S]. Washington D. C.:GSA, 2003.
    [7] U. S. General Service Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects[S]. Washington, D. C.:GSA, 2003.
    [8] American Concrete Institute. Building code requirements for structural concrete and commentary[S]. MI:Farmington Hills, 2008.
    [9] American Concrete Institute. Building code requirements for structural concrete and commentary[S]. MI:Farmington Hills, 2008.
    [10] American Society of Civil Engineers. Minimum design loads for buildings and other structures[S]. New York:ASCE, 2005.
    [11] American Society of Civil Engineers. Minimum design loads for buildings and other structures[S]. New York:ASCE, 2005.
    [12] Office of the Deputy Prime Minister. The Building Regulations 2000:Approved Document A[R]. UK:Department of the Enviroment, Transport and the Regions, 2010.
    [13] Office of the Deputy Prime Minister. The Building Regulations 2000:Approved Document A[R]. UK:Department of the Enviroment, Transport and the Regions, 2010.
    [14] British Standard Institute. Structural use of concrete, part 1:code of practice for design and construction:BS8110[S]. London:BSI, 1997.
    [15] British Standard Institute. Structural use of concrete, part 1:code of practice for design and construction:BS8110[S]. London:BSI, 1997.
    [16] European Committee for Standardization. Eurocode 1:actions on structures. part 1-7:general actions-accidental actions:EN 1991-1-7:2006[S]. Brussels:ECS, 2006.
    [17] European Committee for Standardization. Eurocode 1:Actions on structures. part 1-7:general actions-accidental actions:EN 1991-1-7:2006[S]. Brussels:ECS, 2006.
    [18] European Committee for Standardization. Eurocode 2:design of concrete structures. part 1:general rules and rules for buildings:EN 1992-1-1:2004[S]. Brussels:ECS, 2004.
    [19] European Committee for Standardization. Eurocode 2:design of concrete structures. part 1:general rules and rules for buildings:EN 1992-1-1:2004[S]. Brussels:ECS, 2004.
    [20] 中华人民共和国建设部. 工程结构可靠性设计统一标准:GB 50153-2008[S]. 北京:中国建筑工业出版社,2008.
    [21] Ministry of Construction of the PRC. Unified standard for reliability design of engineering structures:GB 50153-2008[S]. Beijing:China Architecture & Building Press, 2008.
    [22] Ministry of Housing and Urban-Rural Development of People's Republic of China. Load code for the design of building structures:GB 50009-2012[S]. Beijing:China Architecture & Building Press, 2012.
    [23] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009-2012[S]. 北京:中国建筑工业出版社,2012.
    [24] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社,2010.
    [25] Ministry of Housing and Urban-Rural Development of People's Republic of China. Code for Design of Concrete Structures:GB 50010-2010[S]. Beijing:China Architecture & Building Press, 2010.
    [26] Behrouz A, Farshad H R. Progressive collapse analysis of concentrically braced frames through EPCA algorithm[J]. Journal of Constructional Steel Research, 2012, 70:127-136.
    [27] Behrouz A, Farshad H R. Progressive collapse analysis of concentrically braced frames through EPCA algorithm[J]. Journal of Constructional Steel Research, 2012, 70:127-136.
    [28] Farshad H R, Amirmohammad Y, Hamid R R. Effect of span length on progressive collapse behaviour of steel moment resisting frames[J]. Structures, 2015(3):81-89.
    [29] Farshad H R, Amirmohammad Y, Hamid R R. Effect of span length on progressive collapse behaviour of steel moment resisting frames[J]. Structures, 2015, 3:81-89.
    [30] Li H H, Cai X H, Zhang L, et al. Progressive collapse of steel moment-resisting frame subjected to loss of interior column:Experimental tests[J]. Engineering Structures, 2017, 150:203-220.
    [31] Li H H, Cai X H, Zhang L, et al. Progressive collapse of steel moment-resisting frame subjected to loss of interior column:experimental tests[J]. Engineering Structures, 2017, 150:203-220.
    [32] Song B I, Giriunas K A, Sezen H. Progressive collapse testing and analysis of a steel frame building[J]. Journal of Constructional Steel Research, 2014, 94:76-83.
    [33] Song B I, Giriunas K A, Sezen H. Progressive collapse testing and analysis of a steel frame building[J]. Journal of Constructional Steel Research, 2014, 94:76-83.
    [34] Ruth P, Marchand A K,Williamson B E. Static equivalency in progressive collapse alternate path analysis:reducing conservatism while retaining structural integrity[J]. Journal of Performance of Constructed Facilities, 2006, 20(4):349-364.
    [35] Ruth P, Marchand A K, Williamson B E. Static equivalency in progressive collapse alternate path analysis:reducing conservatism while retaining structural integrity[J]. Journal of Performance of Constructed Facilities, 2006, 20(4):349-364.
    [36] Fu F. Progressive collapse analysis of high-rise building with 3-d finite element modeling method[J]. Journal of Constructional Steel Research, 2009, 65:1269-1278.
    [37] Fu F. Progressive collapse analysis of high-rise building with 3-D finite element modeling method[J]. Journal of Constructional Steel Research, 2009, 65:1269-1278.
    [38] Fu Q N, Tan K H, Zhou X H, et al. Numerical simulations on three-dimensional composite structural systems against progressive collapse[J]. Journal of Constructional Steel Research, 2017, 135:125-136.
    [39] Fu Q N, Tan K H, Zhou X H, et al. Numerical simulations on three-dimensional composite structural systems against progressive collapse[J]. Journal of Constructional Steel Research, 2017, 135:125-136.
    [40] Kapil K, Sherif E T. Pushdown resistance as a measure of robustness in progressive collapse analysis[J]. Engineering Structures, 2011, 33:2653-2661.
    [41] Kapil K, Sherif E T. Pushdown resistance as a measure of robustness in progressive collapse analysis[J]. Engineering Structures, 2011, 33:2653-2661.
    [42] Wang W, Fang C, Qin X, et al. Performance of practical beam-to-SHS column connections against progressive collapse[J]. Engineering Structures, 2016, 106:332-347.
    [43] Wang W, Fang C, Qin X, et al. Performance of practical beamto-shs column connections against progressive collapse[J]. Engineering Structures, 2016, 106:332-347.
    [44] Lu X Z, Lin K Q, Li Y, et al. Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario[J]. Engineering Structures, 2017, 149:91-103.
    [45] Lu X Z, Lin K Q, Li Y, et al. Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario[J]. Engineering Structures, 2017, 149:91-103.
    [46] Botez M, Bredean L, Ioani A M. Improving the accuracy of progressive collapse risk assessment:efficiency and contribution of supplementary progressive collapse resisting mechanisms[J]. Computers and Structures, 2016, 174:54-65.
    [47] Botez M, Bredean L, Ioani A M. Improving the accuracy of progressive collapse risk assessment:efficiency and contribution of supplementary progressive collapse resisting mechanisms[J]. Computers and Structures, 2016, 174:54-65.
    [48] NIDA Technology Co. Ltd. NIDA, User's manual. Nonlinear integrated design and analysis[EB/OL].[2019-05-05]. http://www.nidacse.com.
    [49] NIDA Technology Co. Ltd. NIDA, User's manual. Nonlinear integrated design and analysis[EB/OL].[2019-05-05]. http://www.nidacse.com.
  • [1] 万成, 朱奕锋, 汪敏吉.  灵敏度分析在空间钢结构抗连续倒塌控制中的应用, 钢结构. doi: 10.13206/j.gjg.201908006
    [2] 孙磊, 黄磊.  大跨度钢结构抗连续倒塌动力分析, 钢结构. doi: 10.13206/j.gjg.201901007
    [3] 张承亮, 王景玄.  不同组合梁类型对钢管混凝土框架抗连续倒塌承载力影响分析, 钢结构. doi: 10.13206/j.gjg.201811009
    [4] 邵建华, 于彬, 唐柏杰, 王展光.  基于增量动力分析法的低屈服点钢板剪力墙抗震性能分析, 钢结构. doi: 10.13206/j.gjg.201705004
    [5] 张爱林, 高增俊, 刘学春, 郭志鹏.  带悬臂梁段端板连接装配式钢结构节点非线性静力分析, 钢结构. doi: 10.13206/j.gjg.201708014
    [6] 王鑫, 王尧鸿, 曹玉生, 韩青.  钢管混凝土带缝剪力墙非线性分析, 钢结构. doi: 10.13206/j.gjg.201607011
    [7] 程欣, 王惠刚.  钢框架非线性分析方法评述, 钢结构. doi: 10.13206/j.gjg.201606001
    [8] 董硕, 王来, 史奉伟.  砌体填充墙钢框架结构三支杆模型的抗连续倒塌分析, 钢结构. doi: 10.13206/j.gjg.201608002
    [9] 史奉伟, 王来, 董硕.  考虑楼板作用的钢框架抗连续倒塌动力分析, 钢结构. doi: 10.13206/j.gjg.201608003
    [10] 宋戈, 王来.  基于连续倒塌工况下间隔空腹桁架式钢框架受力性能分析, 钢结构. doi: 10.13206/j.gjg.201512021
    [11] 张霓, 王连广.  GFRP管-混凝土-钢管受弯构件非线性分析, 钢结构. doi: 10.13206/j.gjg201412002
    [12] 张建兴, 施刚.  多层钢框架连续倒塌性能的有限元分析, 钢结构. doi: 10.13206/j.gjg201411004
    [13] 古松, 褚云朋.  钢管混凝土柱—型钢混凝土梁节点非线性分析, 钢结构. doi: 10.13206/j.gjg201205001
    [14] 郑阳, 邹道勤, 杨涛.  基于悬链线理论的钢结构抗连续倒塌分析, 钢结构. doi: 10.13206/j.gjg201209003
    [15] 龙期亮, 刘树堂, 王国杰, 侯贯泽.  基于APDL的网壳结构非线性稳定分析, 钢结构. doi: 10.13206/j.gjg201103018
    [16] 贺晗, 余绍锋.  冷弯型钢轴心受压构件在初始缺陷影响下的整体稳定性分析, 钢结构. doi: 10.13206/j.gjg201109002
    [17] 胡少伟, 涂启华.  钢-混凝土叠合板组合梁的非线性分析, 钢结构. doi: 10.13206/j.gjg200702009
    [18] 孙宏才, 徐关尧, 田平.  网络层次分析法在应急钢桥设计方案评估中的应用, 钢结构. doi: 10.13206/j.gjg200704019
    [19] 汤建平, 舒兴平.  上下翼缘角钢半刚性连接性能的图表分析法, 钢结构. doi: 10.13206/j.gjg200709003
    [20] 邵伟清.  张弦穹顶结构非线性稳定分析, 钢结构. doi: 10.13206/j.gjg200506002
  • 加载中
计量
  • 文章访问数:  22
  • HTML全文浏览量:  2
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-02

目录

    /

    返回文章
    返回