留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直接分析法在连续倒塌中的应用

丁智霞 刘耀鹏 杜左雷 陈绍礼

丁智霞, 刘耀鹏, 杜左雷, 陈绍礼. 直接分析法在连续倒塌中的应用[J]. 钢结构(中英文), 2020, 35(2): 13-28. doi: 10.13206/j.gjgSE20010801
引用本文: 丁智霞, 刘耀鹏, 杜左雷, 陈绍礼. 直接分析法在连续倒塌中的应用[J]. 钢结构(中英文), 2020, 35(2): 13-28. doi: 10.13206/j.gjgSE20010801
Zhixia Ding, Yaopeng Liu, Zuolei Du, Siulai Chan. THE APPLICATION OF DIRECT ANALYSIS METHOD IN PROGRESSIVE COLLAPSE[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(2): 13-28. doi: 10.13206/j.gjgSE20010801
Citation: Zhixia Ding, Yaopeng Liu, Zuolei Du, Siulai Chan. THE APPLICATION OF DIRECT ANALYSIS METHOD IN PROGRESSIVE COLLAPSE[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(2): 13-28. doi: 10.13206/j.gjgSE20010801

直接分析法在连续倒塌中的应用

doi: 10.13206/j.gjgSE20010801
基金项目: 

香港特别行政区政府创新及科技基金(ITS/059/16FP)。

详细信息
    作者简介:

    丁智霞,女,1993年出生,博士研究生。

    通讯作者:

    刘耀鹏,yaopeng.liu@connect.polyu.hk

THE APPLICATION OF DIRECT ANALYSIS METHOD IN PROGRESSIVE COLLAPSE

  • 摘要: 结构连续性倒塌分析中的核心问题主要有材料非线性、初始缺陷、动力效应和悬链线效应。结构的抗连续性倒塌性能设计验算主要采用构件拆除法,将关键竖向承载力构件拆除后检验结构的响应。结构整体分析可采用线性静力分析、非线性静力分析和非线性动力分析三种方法。采用基于非线性静力分析的直接分析法,在分析中直接考虑对结构响应有影响的因素,如材料非线性、初始几何缺陷、残余应力、节点连接刚度等,以整个结构体系为对象进行抗连续性倒塌分析。基于NIDA软件,通过一个算例体现了GSA和UFC规范中的构件拆除法的设计过程,并与传统的线性静力分析结果作比较。
  • U. S. General Service Administration. Alternate path analysis and design guidelines for progressive collapse resistance[S]. Washington, D. C.:GSA, 2013.
    U. S. General Service Administration. Alternate path analysis and design guidelines for progressive collapse resistance[S]. Washington D. C.:GSA, 2013.
    Department of Defense. Unified Facilities Criteria:Design of Structures to Resist Progressive Collapse[S]. Washington, D. C.:DoD, 2010.
    Department of Defense. Unified facilities criteria:design of structures to resist progressive collapse[S]. Washington D. C.:DoD, 2010.
    U. S. General Service Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects[S]. Washington D. C.:GSA, 2003.
    U. S. General Service Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects[S]. Washington, D. C.:GSA, 2003.
    American Concrete Institute. Building code requirements for structural concrete and commentary[S]. MI:Farmington Hills, 2008.
    American Concrete Institute. Building code requirements for structural concrete and commentary[S]. MI:Farmington Hills, 2008.
    American Society of Civil Engineers. Minimum design loads for buildings and other structures[S]. New York:ASCE, 2005.
    American Society of Civil Engineers. Minimum design loads for buildings and other structures[S]. New York:ASCE, 2005.
    Office of the Deputy Prime Minister. The Building Regulations 2000:Approved Document A[R]. UK:Department of the Enviroment, Transport and the Regions, 2010.
    Office of the Deputy Prime Minister. The Building Regulations 2000:Approved Document A[R]. UK:Department of the Enviroment, Transport and the Regions, 2010.
    British Standard Institute. Structural use of concrete, part 1:code of practice for design and construction:BS8110[S]. London:BSI, 1997.
    British Standard Institute. Structural use of concrete, part 1:code of practice for design and construction:BS8110[S]. London:BSI, 1997.
    European Committee for Standardization. Eurocode 1:actions on structures. part 1-7:general actions-accidental actions:EN 1991-1-7:2006[S]. Brussels:ECS, 2006.
    European Committee for Standardization. Eurocode 1:Actions on structures. part 1-7:general actions-accidental actions:EN 1991-1-7:2006[S]. Brussels:ECS, 2006.
    European Committee for Standardization. Eurocode 2:design of concrete structures. part 1:general rules and rules for buildings:EN 1992-1-1:2004[S]. Brussels:ECS, 2004.
    European Committee for Standardization. Eurocode 2:design of concrete structures. part 1:general rules and rules for buildings:EN 1992-1-1:2004[S]. Brussels:ECS, 2004.
    中华人民共和国建设部. 工程结构可靠性设计统一标准:GB 50153-2008[S]. 北京:中国建筑工业出版社,2008.
    Ministry of Construction of the PRC. Unified standard for reliability design of engineering structures:GB 50153-2008[S]. Beijing:China Architecture & Building Press, 2008.
    Ministry of Housing and Urban-Rural Development of People's Republic of China. Load code for the design of building structures:GB 50009-2012[S]. Beijing:China Architecture & Building Press, 2012.
    中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009-2012[S]. 北京:中国建筑工业出版社,2012.
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社,2010.
    Ministry of Housing and Urban-Rural Development of People's Republic of China. Code for Design of Concrete Structures:GB 50010-2010[S]. Beijing:China Architecture & Building Press, 2010.
    Behrouz A, Farshad H R. Progressive collapse analysis of concentrically braced frames through EPCA algorithm[J]. Journal of Constructional Steel Research, 2012, 70:127-136.
    Behrouz A, Farshad H R. Progressive collapse analysis of concentrically braced frames through EPCA algorithm[J]. Journal of Constructional Steel Research, 2012, 70:127-136.
    Farshad H R, Amirmohammad Y, Hamid R R. Effect of span length on progressive collapse behaviour of steel moment resisting frames[J]. Structures, 2015(3):81-89.
    Farshad H R, Amirmohammad Y, Hamid R R. Effect of span length on progressive collapse behaviour of steel moment resisting frames[J]. Structures, 2015, 3:81-89.
    Li H H, Cai X H, Zhang L, et al. Progressive collapse of steel moment-resisting frame subjected to loss of interior column:Experimental tests[J]. Engineering Structures, 2017, 150:203-220.
    Li H H, Cai X H, Zhang L, et al. Progressive collapse of steel moment-resisting frame subjected to loss of interior column:experimental tests[J]. Engineering Structures, 2017, 150:203-220.
    Song B I, Giriunas K A, Sezen H. Progressive collapse testing and analysis of a steel frame building[J]. Journal of Constructional Steel Research, 2014, 94:76-83.
    Song B I, Giriunas K A, Sezen H. Progressive collapse testing and analysis of a steel frame building[J]. Journal of Constructional Steel Research, 2014, 94:76-83.
    Ruth P, Marchand A K,Williamson B E. Static equivalency in progressive collapse alternate path analysis:reducing conservatism while retaining structural integrity[J]. Journal of Performance of Constructed Facilities, 2006, 20(4):349-364.
    Ruth P, Marchand A K, Williamson B E. Static equivalency in progressive collapse alternate path analysis:reducing conservatism while retaining structural integrity[J]. Journal of Performance of Constructed Facilities, 2006, 20(4):349-364.
    Fu F. Progressive collapse analysis of high-rise building with 3-d finite element modeling method[J]. Journal of Constructional Steel Research, 2009, 65:1269-1278.
    Fu F. Progressive collapse analysis of high-rise building with 3-D finite element modeling method[J]. Journal of Constructional Steel Research, 2009, 65:1269-1278.
    Fu Q N, Tan K H, Zhou X H, et al. Numerical simulations on three-dimensional composite structural systems against progressive collapse[J]. Journal of Constructional Steel Research, 2017, 135:125-136.
    Fu Q N, Tan K H, Zhou X H, et al. Numerical simulations on three-dimensional composite structural systems against progressive collapse[J]. Journal of Constructional Steel Research, 2017, 135:125-136.
    Kapil K, Sherif E T. Pushdown resistance as a measure of robustness in progressive collapse analysis[J]. Engineering Structures, 2011, 33:2653-2661.
    Kapil K, Sherif E T. Pushdown resistance as a measure of robustness in progressive collapse analysis[J]. Engineering Structures, 2011, 33:2653-2661.
    Wang W, Fang C, Qin X, et al. Performance of practical beam-to-SHS column connections against progressive collapse[J]. Engineering Structures, 2016, 106:332-347.
    Wang W, Fang C, Qin X, et al. Performance of practical beamto-shs column connections against progressive collapse[J]. Engineering Structures, 2016, 106:332-347.
    Lu X Z, Lin K Q, Li Y, et al. Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario[J]. Engineering Structures, 2017, 149:91-103.
    Lu X Z, Lin K Q, Li Y, et al. Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario[J]. Engineering Structures, 2017, 149:91-103.
    Botez M, Bredean L, Ioani A M. Improving the accuracy of progressive collapse risk assessment:efficiency and contribution of supplementary progressive collapse resisting mechanisms[J]. Computers and Structures, 2016, 174:54-65.
    Botez M, Bredean L, Ioani A M. Improving the accuracy of progressive collapse risk assessment:efficiency and contribution of supplementary progressive collapse resisting mechanisms[J]. Computers and Structures, 2016, 174:54-65.
    NIDA Technology Co. Ltd. NIDA, User's manual. Nonlinear integrated design and analysis[EB/OL].[2019-05-05]. http://www.nidacse.com.
    NIDA Technology Co. Ltd. NIDA, User's manual. Nonlinear integrated design and analysis[EB/OL].[2019-05-05]. http://www.nidacse.com.
  • 加载中
计量
  • 文章访问数:  50
  • HTML全文浏览量:  5
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-02

目录

    /

    返回文章
    返回