留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

日本钢桥的历史和技术发展综述

藤野陽三 Dionysius Siringoringo

藤野陽三, Dionysius Siringoringo. 日本钢桥的历史和技术发展综述[J]. 钢结构, 2020, 35(1): 34-58. doi: 10.13206/j.gjgSE19112604
引用本文: 藤野陽三, Dionysius Siringoringo. 日本钢桥的历史和技术发展综述[J]. 钢结构, 2020, 35(1): 34-58. doi: 10.13206/j.gjgSE19112604
Yozo Fujino, Dionysius Siringoringo. Historical and Technological Developments of Steel Bridges in Japan—A Review[J]. STEEL CONSTRUCTION, 2020, 35(1): 34-58. doi: 10.13206/j.gjgSE19112604
Citation: Yozo Fujino, Dionysius Siringoringo. Historical and Technological Developments of Steel Bridges in Japan—A Review[J]. STEEL CONSTRUCTION, 2020, 35(1): 34-58. doi: 10.13206/j.gjgSE19112604

日本钢桥的历史和技术发展综述

doi: 10.13206/j.gjgSE19112604
详细信息
    通讯作者:

    藤野陽三,Email:fujino-yozo-bv@ynu.ac.jp

Historical and Technological Developments of Steel Bridges in Japan—A Review

  • 摘要: 在日本,由于钢材具有良好的抗震性能、成熟的施工和制造技术,成本竞争力以及在跨越能力方面的优势,从而广泛用于桥梁结构。钢桥约占公路桥梁总数的38.3%。本文对日本的钢桥历史和技术发展进行了综述,主要包含结构分析、材料、标准的结构设计以及检测维护等四个方面。
    日本钢桥的建造历史可以追溯到1868年。早期建造的桥梁没有统一的设计标准,第一部钢桥设计标准于1939年起草。该标准规定,日本的公路桥分为国道桥梁和县道桥梁两级,标准车辆荷载分别为13 t和9 t。自1950年以来,钢铁生产和焊接技术的发展取得了显著进步,并且设计和施工规范也定期更新以适应新技术的发展。日本在1960年进入了基础设施的大规模建设时期,主要是因为1964年的东京奥运会。在此期间,建造了现代斜拉桥和悬索桥,并开始进行本州四国联络桥的技术研究。此外,开始建设东海道新干线、首都高速公路、名神高速公路和东名高速公路等交通基础设施。钢桥结构相关的材料、分析、设计和施工技术得到了迅速发展和进步。2000年以后,钢桥的发展主要集中于降低建设成本、改善全寿命周期的设计、施工和维护等方面。
    日本钢桥研发的最初驱动力是在广阔而复杂的的地形条件下提供可靠的基础设施,以支持经济增长。在材料方面,钢桥的建设需求促进了高性能钢、高强度钢丝和高强螺栓的发展。另一个值得注意的驱动力是地震和台风等灾难造成的基础设施损失。抗震和抗风工程领域的需求推动了高质量钢材的生产以及钢桥安全性和可维修性的研究。大跨径钢桥的桥塔、主梁和索等对风敏感,因此开发了相关的风洞试验和分析技术。自1995年兵库县南部地震以来,钢桥的抗震、隔震以及抗震改造等技术一直稳步发展。在研究和开发之后,更新了设计指南,从而推进钢桥设计和建造的标准化。
    近些年,随着钢桥桥龄逐步增大,其维护逐步成为管理的重点。在钢桥防锈蚀方面,已经研发和应用了钢桥涂装、除湿系统等技术。随着桥龄、车流量和车辆载重的增长,钢桥的疲劳问题也逐步出现。为了解决该问题,开发了疲劳裂纹检测和维修技术等。在钢桥检测和维护领域,许多新兴的技术也得到了应用,例如基于无人机的桥梁检测、基于电磁技术的无损检测、混凝土桥面板的雷达探测等。
    经过数十年的研究和实践,可以认为钢桥的技术和开发已经成熟。如今仍然存在两个挑战,第一个是开发更有效的结构体系和施工技术以降低成本。第二个是维护现有的钢桥,使其在整个使用寿命中都能有效地发挥作用。
  • [1] Planning Division, Road Bureau, Ministry of Land, Infrastructure and Transport. Annual report on road statistics[Z]. Japan, 2009. (in Japanese).
    [2] Fujino Y, Kawai Y. Technical development in structural engineering with emphasis on steel bridges in japan[J]. Journal of JSCE, 2016, 4(1):211-226.
    [3] Tanaka G, Shindo T, Toda M. On the fabrication and erection of all-welded highway bridge of Honkyubashi bridge[J]. Journal of the Japan Welding Society, 1952, 21(9):236-246. (in Japanese)
    [4] Japan Bridge Engineering Center. Progress in Honshu Shikoku bridges[C]//Committee on Editing of Honshu Shikoku Bridge History, 1985. (in Japanese)
    [5] Togashi G. A study on the planning and managing of Japan's long-span suspension bridge[J]. J. Struct. Mech. Earthquake Eng., JSCE, 1988,397(VI-9):1-16. (in Japanese)
    [6] Matsudo S, Akashi S, Zaizen T, et al. Part I outlook on R&D, selection of structural steel plates and their design and execution-including HT70, HT80[J]. Journal of JSCE, 1973,58(4):1-7. (in Japanese)
    [7] Aramaki E. Planning of new tomei-meishin expressway[J].J. Struct. Mech. Earthquake Eng., JSCE, 1992,444(VI-16):1-9. (in Japanese)
    [8] Fukumoto Y. Bridges in steel-Japan[C]//Pacific structural steel conference, 2nd, 1989, Gold Coast, Queensland, Australia. Australia:Milsons Point, N.S.W.:Australian Institute of Steel Construction, 1989:23-38.
    [9] Ohashi H, Authority H S B. Design of long-span highway and railway suspension bridges[J]. Civ. Engrg. in Japan, 1988,27:33-41.
    [10] Fujino Y, Siringoringo D M, Abe M. Japan's experience on long-span bridges monitoring[J]. Struc. Monitoring and Maintenance, 2016,3(3):233-257.
    [11] Kitagawa M. Technology of the Akashi Kaikyo bridge[J]. Structural Control and Health Monitoring, 2004,11(2):75-90.
    [12] Ohashi H. Design safety check of the Tatara bridge[J]. Honshi Technical Report, 1999,23(90):11-16. (in Japanese)
    [13] Kamei M, Maruyama T, Tanaka H. Konohana bridge, Japan[J]. Structural Engineering International, 1992,2(1):4-6.
    [14] Kurihara H, Tokuyama I, Tanabe K, et al. Construction of superstructure of the Ujina bridge[J]. Bridge and Foundation Engineering, 2000,34(2):8-18. (in Japanese)
    [15] Uchida K, Asakura H. Trans-Tokyo Bay Highway[J]. Structural Engineering International, 1998,8(1):7-9.
    [16] Ito H, Atsumi T, Shiota K, et al. Design, fabrication and erection of Arakawa-arch bridge[J]. Kawada Industry Technical Report, 1995, 14:35-40.
    [17] Watanabe E, Maruyama T, Ueda S, et al. Yumemai floating swing arch bridge of Osaka, Japan[J]. Large Floating Structures, 2014, 3:61-90.
    [18] Yoneyama T, Fujii Y. Fabrication and erection of Tokyo gate bridge[C]//Proc. of. IABSE-JSCE Joint Conference on Advances in Bridge Engineering-III. Dhaka, Bangladesh:2015:21-22.
    [19] Homma K. Newly developed bridge high-performance steel and its application to Tokyo Gate Bridge[J]. International Association for Bridge and Structural Engineering, 2016,104(25):1-6.
    [20] Miki C. High-performance Steels in Japan[Z]. Structural Eng. Document-8 Use and Application of High-performance Steels for Steel Structures, IABSE SED-8.2015.
    [21] Nagai M, Okui Y, Kawai Y, et al. Bridge engineering in Japan[M]. CRC press, 1999:1037-1086.
    [22] Kanno R. Advances in steel materials for innovative and elegant steel structures in Japan-a review[J]. Structural Engineering International, 2016,26(3):242-253.
    [23] Uno N, Kubota M, Nagata M, et al. Super high strength bolt "SHTB"[J]. Nippon Steel Technical Report(Shinnittetsu Giho), 2007,387:85-93. (in Japanese)
    [24] Fujino Y, Kimura K, Tanaka H. Wind resistant design codes for bridges in Japan[J]. Wind Resistant Design of Bridges in Japan, 2012:1-7. Doi: 10.1007/978-4-431-54046-5_1.
    [25] Fujino Y, Siringoringo D. Vibration mechanisms and controls of long-span bridges-a review[J]. Structural Engineering International, 2013, 23(3):248-268.
    [26] Japan Society of Civil Engineers.Guide specification for wind resistant design of Honshu-Shikoku bridges[S]. Technical Advisory Committee for the Honshu-Shikoku Bridge Project,1964. (in Japanese)
    [27] Japan Road Association. Specifications for highway bridges[S]. Tokyo, Japan:Maruzen Publishing,2002. (in Japanese)
    [28] Hiroshi K. Wind resistant design and wind measurements for Honshu-Shikoku Bridges[J]. Wind Engineers, JAWE, 2009, 34(3):353-356.
    [29] Japan Road Association. Wind resistant design manual for highway bridges[S].Tokyo:2007. (in Japanese)
    [30] Fujino Y, Yoshida Y. Wind-induced vibration and vontrol of Trans-Tokyo Bay Crossing Bridge[J].J. Struct. Eng. ASCE, 2002, 128:1012-1025.
    [31] Siringoringo D M, Fujino Y. Observed along-wind vibration of a suspension bridge tower[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012,103:107-121.
    [32] Hikami Y, Shiraishi N. Rain-and wind-induced vibration[J]. J. Wind Eng. Ind. Aerodyn,1988, 29:409-418.
    [33] Matsumoto M, Shiraishi N, Shirato H. Rain-wind induced vibration of cables of cable-stayed bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992(41/42/43/44):2011-2022.
    [34] Matsumoto M. Observed behavior of prototype cable vibration and its generation mechanism, in Bridge Aerodynamics[J]. Balkema:Rotterdam, 1998:189-211.
    [35] Matsumoto M, Yagi T, Hatsuda H, et al. Dry galloping characteristics and its mechanism of inclined/yawed cables[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6/7):317-327.
    [36] Miyata T, Yamada H, Hojo T. Aerodynamic response of PE stay cables with pattern-indented surface[C]//Proc.of International Conference on Cable-stayed and Suspension Bridges. Deauville:France, 1994:515-522.
    [37] Katsuchi H, Yamada H. Surface pressure and axial flow measurements for indented-surface stay cable[C]//Proc. of 8th International Symposium on Cable Dynamics. Paris:2009:215-222.
    [38] Katsuchi H, Vo H D, Yamada H. Effect of low-frequency vortices on dry galloping of bridge stay cable[C]//Proc. of International Symposium on the Dynamics and Aerodynamics of Cables (ISDAC). Porto:Portugal, 2017:1-8.
    [39] Kawashima K, Unjoh S. Seismic design of highway bridges[J]. Journal of Japan Association for Earthquake Engineering, 2014,4(3):174-183.
    [40] Ministry of Construction. Report on the damage of highway bridges by the Hyogo-ken Nanbu earthquake[C]//Committee for Investigation on the Damage of Highway Bridges Caused by the Hyogo-ken Nanbu Earthquake(in English).1995.
    [41] Kawashima K, Unjoh S. The damage of highway bridges in the 1995 Hyogo-ken Nanbu earthquake and its impact on japanese seismic design[J]. Journal of Earthquake Engineering, 1997,1(3):505-541.
    [42] Bruneau M. Performance of steel bridges during the 1995 Hyogo-ken Nanbu (Kobe, Japan) earthquake-a North American perspective[J]. Engineering Structures, 1998, 20(12):1063-1078.
    [43] Lin A, Uda S. Tectonic history of the Akashi strait and the fault model associated with the Southern Hyogo prefecture earthquake[J]. Journal of the Japan Society of Engineering Geology, 1996,37(3):12-23. (in Japanese)
    [44] Kawashima K. Seismic design and retrofit of bridges[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2000,33(3):265-285.
    [45] Public Works Research Center (PWRC). Menshin (Seismic Isolation) bridges in Japan[R]. Technical Note of PWRI No.4288,2014.
    [46] Matsuo Y, Oishi A, Hara K, et al. Design and construction of Miyagawa, bridge[J]. Bridge and Foundation Engineering, 1991,25(2):15-22.
    [47] Unjoh S. Seismic retrofit of highway bridges[J]. Journal of Japan Association for Earthquake Engineering, 2004,4(3):230-248.
    [48] Kanaji H, Fujino Y, Watanabe E. Performance-based seismic retrofit design of a long-span truss bridge-Minato bridge-using new control technologies[J]. Structural Engineering International, 2008,18(3):271-277.
    [49] Fujino Y, Kikkawa H, Namikawa K, et al. Seismic retrofit design of long-span bridges on metropolitan expressways in Tokyo[J]. Transportation Research Record:Journal of the Transportation Research Board, 2005.Doi: 10.3141/trr.11s.1371l823v02811m0.
    [50] Fujino Y. Vibration-based monitoring for performance evaluation of flexible civil structures in Japan[J]. Proceedings of the Japan Academy, Series B, 2018,94(2):98-128.
    [51] Siringoringo D M, Fujino Y. Observed dynamic performance of the Yokohama-Bay bridge from system identification using seismic records[J]. Structural Control and Health Monitoring, 2006,13(1):226-244.
    [52] Siringoringo D M, Fujino Y. System identification applied to long-span cable-supported bridges using seismic records[J]. Earthquake Engineering & Structural Dynamics, 2008,37(3):361-386.
    [53] Road Bureau Ministry of Land, Infrastructure, Transport and Tourism of Japan, 2015 Roads in Japan[EB/OL]. http://www.mlit.go.jp/road/road_e/index_e.html.
    [54] Japan Road Association. Design specifications of highway bridges, part II:steel bridges[S].2002.
    [55] Kitagawa M, Furuya K, Nakamura S, et al. A study on anti-corrosion capacity of dry air injection system of suspension bridge cables[J].Proc.of the Japan Society of Civil Engineers, 2001.Doi:10.2208/jscej.2001.672_145. (in Japanese)
    [56] Shimonishi M, Konishi T, Nakanishi Y, et al. Fatigue cracking in steel bridge piers in tokyo metropolitan expressway[R]. International Association for Bridge and Structural Engineering Symposium Report,2004, 88(2):37-42.
    [57] Okuda M, Yamada, Hasegawa Y. Preventive maintenance and technical development on long-span bridges[C]//Proc.of IABMAS 2010. Philadelphia:USA,2010.
    [58] SIP (Cross-Ministerial Strategic Innovation Program). Pioneering the future:Japanese science, technology, and innovation, council for science, technology and innovation[Z].[2018-05-08]. Cabinet Office, Government of Japan, 2014. http://www8.cao.go.jp/cstp/gaiyo/sip/index.html.
    [59] Fujino Y. Bridge maintenance, renovation and management-research and development of governmental program in Japan[C]//Proc. 9th International Conference on Bridge Maintenance, Safety and Management (IABMAS 2018). Melbourne:Australia,2018.
    [60] Mizutani T, Nakamura N, Yamaguchi T, et al. Bridge slab damage detection by signal processing of UHF-band ground penetrating radar data[J]. Journal of Disaster Research, 2017,12(3):415-421.
  • [1] 翟晓亮, 袁远.  我国耐候钢桥发展及展望, 钢结构. doi: 10.13206/j.gjg.201911012
    [2] 饶力, 罗洵, 游庆.  江西某钢框架结构办公楼基础隔震研究, 钢结构. doi: 10.13206/j.gjg.201904012
    [3] 赵建国, 张海军, 金凤诚.  国标钢材替换欧标钢材的原则、方案及设计要点, 钢结构. doi: 10.13206/j.gjg201310007
    [4] 蔡倩, 水培君.  钢柱外包式柱脚抗震设计问题, 钢结构. doi: 10.13206/j.gjg201301009
    [5] 林瑾, 李娟.  人字形延性中心支撑钢框架的抗震设计与分析, 钢结构. doi: 10.13206/j.gjg201302008
    [6] 江克斌, 丁勇.  波纹钢腹板组合箱梁桥力学性能研究现状及发展, 钢结构. doi: 10.13206/j.gjg201012001
    [7] 欧阳初, 马广顺, 徐关尧, 张恒飞.  装配式钢桥健康监测及安全评价系统的设计, 钢结构. doi: 10.13206/j.gjg201012010
    [8] 邹德辉, 郭爱民.  我国铁路桥梁用钢的现状与发展, 钢结构. doi: 10.13206/j.gjg200909001
    [9] 徐关尧, 朱杰.  我国装配式公路钢桥的发展及应用, 钢结构. doi: 10.13206/j.gjg200907002
    [10] 王元良, 陈辉.  我国焊接钢桥及其发展, 钢结构. doi: 10.13206/j.gjg200905001
    [11] 张银龙, 苟明康, 梁川.  钢结构稳定性设计方法的发展综述及分析, 钢结构. doi: 10.13206/j.gjg200807001
    [12] 陈炯.  对抗震钢框架板件宽厚比限值与相应的地震作用设计取值的细化和完善, 钢结构. doi: 10.13206/j.gjg200812013
    [13] 刘竞, 邓德华, 胡旭丽, 罗妮.  壳坚隔联保护层结构中的钢网设计与施工, 钢结构. doi: 10.13206/j.gjg200805009
    [14] 金安红.  南京三桥钢塔钢混结合段的设计与制造, 钢结构. doi: 10.13206/j.gjg200702020
    [15] 种信强.  钢结构企业的营销与发展, 钢结构. doi: 10.13206/j.gjg200602026
    [16] 范圣刚, 舒赣平, 陈道政, 刘美景.  带拉索景观钢桥的设计与分析, 钢结构. doi: 10.13206/j.gjg200605009
    [17] 李志明.  美国钢结构设计规范的最新发展, 钢结构. doi: 10.13206/j.gjg200506022
    [18] 史耀武.  焊接技术在现代制造业及工程建设中的应用与发展(上), 钢结构. doi: 10.13206/j.gjg200505019
    [19] 史耀武.  焊接技术在现代制造业及工程建设中的应用与发展(下), 钢结构. doi: 10.13206/j.gjg200506017
    [20] 张建新, 刘雁, 环志中.  国外钢结构住宅的发展历史浅析, 钢结构. doi: 10.13206/j.gjg200504002
  • 加载中
计量
  • 文章访问数:  66
  • HTML全文浏览量:  8
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-01
  • 修回日期:  2019-06-12

目录

    /

    返回文章
    返回