Research on Global Stability Design Method of Steel-Concrete Composite Beams of Negative Moment Region
-
摘要: 钢-混凝土组合梁受力合理,吊重较轻,施工方便,在中小跨径桥梁中有广泛的应用,但其在负弯矩区会存在侧向失稳问题。对于负弯矩区整体稳定性设计,各标准按照弹性地基梁理论或倒U型框架理论给出了计算方法,但不同标准的计算结果有所差异,如何选取一种既满足一定精度又相对计算简单的方法来辅助设计成为目前急需解决的问题。
依据MATLAB数值计算方法,对欧洲规范Eurocode 4、GB 50917—2013《钢-混凝土组合桥梁设计规范》、GB 50017—2017《钢结构设计标准》的组合梁整体稳定计算方法进行比较,分析跨度、腹板高厚比、混凝土板配筋率等参数变化对组合梁稳定折减系数的影响。基于ABAQUS非线性有限元分析方法,对组合梁整体稳定问题采用弧长法进行了非线性有限元模拟,比较了三种标准的设计方法在跨度和腹板高厚比变化下,弹塑性临界失稳弯矩计算结果与有限元分析计算结果的差异。
通过大量数据分析发现:提高混凝土板配筋率会使稳定折减系数略微降低,这是因为纵向钢筋配筋率的提高一方面会提高组合梁截面的刚度,另一方面会导致中性轴上移,受压区增大。这两者中,中性轴上移的不利作用略微大于截面刚度提高的有利作用,整体来说,提高混凝土板配筋率对负弯矩区稳定性无明显作用;高厚比对组合梁稳定作用影响较大,高厚比增大,稳定折减系数有较为明显的减小;组合梁上翼缘受到约束,侧向位移受到限制,当跨度增大到一定程度,失稳模态由一个半波失稳变为两个半波失稳,故在跨度较小时,增大跨度,负弯矩区稳定性降低,当跨度增大到一定数值,增大跨度对负弯矩区稳定性影响较小。将有限元模拟结果与三种标准中负弯矩区整体临界失稳弯矩进行对比,结果表明:三种设计方法计算得出的弹塑性临界失稳弯矩均小于模拟值,有一定的安全富余度;EC 4算法计算结果与有限元模拟结果变化趋势更为接近且较为保守;GB 50917—2013中计算过程简单且能保证一定的安全度;GB 50017—2017计算结果与有限元模拟结果更为接近,安全储备相对其余两本标准较低。Abstract: Steel-concrete composite beams are widely used in medium and small span bridges because of their reasonable acceptance, light lifting weight and convenient in construction, but they have lateral instability in the negative moment region. For the global stability design in the negative moment region, each code gives the calculation method according to the elastic foundation beam theory or inverted U-frame theory, but the results of different codes are different. How to select a method with good accuracy and relatively simple to assist the design that has become an urgent problem to be solved.
Using MATLAB numerical calculation method, this paper analyzed the parameter sensitivity of span, web height thickness ratio and reinforcement ratio of concrete slab of the global stability calculation method of composite beams in Eurocode 4, Code for Design of Steel and Concrete Composite Bridges(GB 50917-2013) and Standard for Design of Steel Structures(GB 50017-2017), and analyzed the influence of parameter changes of the stability reduction coefficient of composite beams. Based on ABAQUS nonlinear finite element analysis method, the arc-length method was used to simulate the global stability of composite beams. The differences were compared between the elastic-plastic critical buckling moment calculated by the three code and the finite element analysis under the changes of span and web height thickness ratio.
Through a large number of data analysis, it is found that:increasing the reinforcement ratio of concrete slab will slightly reduce the stability reduction coefficient, on the one hand, the increase in longitudinal reinforcement ratio will improve the stiffness of steel beams, on the other hand, it will lead to the upward movement towards neutral axis and increase of compression region. In both cases, the adverse effect of upward movement towards neutral axis is slightly greater than the beneficial effect of increasing section stiffness. On the whole, improving the reinforcement ratio of concrete slabs has no obvious effect on the stability of negative moment region; the height thickness ratio has a great influence on the stability of composite beams. With the increase of height thickness ratio, the stability reduction coefficient decreases obviously; the upper flange of the composite beam is restrained and the lateral displacement is limited, when the span increases to a certain extent, the instability mode changes from one half wave to two halves wave. Therefore, when the span is small, the stability in the negative moment region decreases with the increase of the span. When the span increases to a certain value, the increase in the span has little impact on the stability in the negative moment region. The results show that the elastic-plastic critical moments calculated by the three design methods are less than the simulated values, and there is a certain safety margin; the calculation results of the Eurocode 4 is closer and more conservative than the finite element simulation results, Code for Design of Steel and Concrete Composite Bridges is simple and can also ensure a certain degree of safety, Standard for Design of Steel Structures is closer to the finite element simulation results, and the safety reserve is relatively low than the other two code. -
[1] 陈世鸣.连续组合梁侧向失稳的弹性地基压杆稳定解[J].工业建筑,1997,27(2):29-32,42. [2] 陈世鸣,顾萍.负弯矩区Π型组合梁的连接强度与刚度[J].工业建筑,2002,32(9):8-10,73. [3] Johnson R P,Fan C K R.Distortional lateral buckling of continuous composite beams[J].Proceedings of the Institution of Civil Engineers,1991,91(1):131-161. [4] 陈伟,叶继红.基于势能原理的双轴对称工字梁弹性侧向屈曲研究[J].工程力学,2012,29(3):95-102. [5] 童乐为,刘洋,孙波,等.负弯矩作用下钢-混凝土组合梁受力性能试验研究[J].建筑结构学报,2014,35(10):1-9. [6] 刘洋,童乐为,孙波,等.负弯矩作用下钢-混凝土组合梁受力性能有限元分析及受弯承载力计算[J].建筑结构学报,2014,35(10):10-20. [7] 刘劲,丁兴发,蒋丽忠,等.负弯矩荷载下钢-混凝土组合梁抗弯刚度研究[J].铁道科学与工程学报,2019,16(9):2281-2289. [8] 刘沐宇,陈齐风,张强.弹性转动约束的钢-混组合梁腹板剪切屈曲试验研究[J].土木工程学报,2015(10):78-87. [9] 童根树,夏骏.工字形截面钢连续梁负弯矩区的稳定性[J].建筑钢结构进展,2007,9(1):46-51.
点击查看大图
计量
- 文章访问数: 356
- HTML全文浏览量: 67
- PDF下载量: 33
- 被引次数: 0