Volume 40 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
Wu Hongyan, Wang Wanqi, Peng Cuncai, Li Wang, Chen Xincheng, Gao Xiuhua, Gao Cairu, Du Linxiu. Research on the Microstructure, Properties, and Corrosion Behavior of Q550qENH Weathering Bridge Steel in High-Altitude Environments[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(11): 1-7. doi: 10.13206/j.gjgS25101701
Citation: Wu Hongyan, Wang Wanqi, Peng Cuncai, Li Wang, Chen Xincheng, Gao Xiuhua, Gao Cairu, Du Linxiu. Research on the Microstructure, Properties, and Corrosion Behavior of Q550qENH Weathering Bridge Steel in High-Altitude Environments[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(11): 1-7. doi: 10.13206/j.gjgS25101701

Research on the Microstructure, Properties, and Corrosion Behavior of Q550qENH Weathering Bridge Steel in High-Altitude Environments

doi: 10.13206/j.gjgS25101701
  • Received Date: 2025-10-17
  • Publish Date: 2025-11-30
  • This paper investigates the effect of different tempering temperatures on the microstructure and properties of Q550qENH weathering bridge steel using optical microscopy, scanning electron microscopy, tensile testing, and impact testing. The corrosion behavior of the experimental steel in a simulated industrial atmosphere was also studied through cyclic immersion corrosion tests.The results showed that the microstructure of the experimental steel primarily consisted of granular bainite, polygonal ferrite, and a minor amount of acicular ferrite. As the tempering temperature increased, the strength of the experimental steel initially increased and then decreased. Specifically, the yield strength and tensile strength of the steel tempered at 500 ℃ were 690 MPa and 772 MPa, respectively, with an elongation of 21%. The tempering treatment promoted the decomposition of the M/A island structure in the matrix, resulting in an increased proportion of high-angle grain boundaries. This contributed to the excellent low-temperature impact toughness of the experimental steel, with impact energies of 291 J, 276 J, and 237 J at temperatures of -40 ℃, -60 ℃, and -80 ℃, respectively. Furthermore, cross-sectional analysis of the rust layer revealed the enrichment of Cr and Ni elements, and α-FeOOH was identified as the primary component, indicating excellent corrosion resistance.
  • loading
  • [1]
    毛新平,武会宾,汤启波. 我国桥梁结构钢的发展与创新[J]. 现代交通与冶金材料,2021,1(6):1-5.
    [2]
    黄维,张志勤,高真凤,等. 国外高性能桥梁用钢的研发[J]. 世界桥梁,2011(2):18-21.
    [3]
    张宇,郑凯锋,衡俊霖. 免涂装耐候钢桥梁腐蚀设计方法现状及展望[J]. 钢结构,2018,33(9):116-121.
    [4]
    凌广. 耐候钢在川藏公路某大跨径桥梁设计中的应用[J]. 公路,2022,67(6):154-158.
    [5]
    程鹏. 690MPa级耐候桥梁钢Si、Ni含量优化及工业大气环境下服役行为[D]. 武汉:武汉科技大学,2023.
    [6]
    田志强,孙力,刘建磊,等. 国内外耐候桥梁钢的发展现状[J]. 河北冶金,2019(2):11-13.
    [7]
    车平,李军平,于强,等. 耐候桥梁钢及其焊缝耐腐蚀性评价研究[J]. 世界桥梁,2022,50(2):71-77.
    [8]
    韩建华. 高海拔寒冷地区公路设计理念与方法及其应用[D]. 西安:长安大学,2015.
    [9]
    陈建超,庞洪轩. 回火温度对热轧耐候桥梁钢组织和性能的影响[J]. 宽厚板,2022,28(1):11-14.
    [10]
    麻亚鑫,贾潇,杨宇龙,等. 回火温度对500 MPa级海工钢组织性能的影响[J]. 钢铁研究学报,2022,34(12

    ):1465-1475.
    [11]
    高彩茹,屈兵兵,田余东,等. 回火温度对在线淬火Q690q桥梁钢显微组织和力学性能的影响[J]. 东北大学学报(自然科学版),2021,42(7):927-932.
    [12]
    Li C W,Han L Z,Luo X M,et al. Effect of tempering temperature on the microstructure and mechanical properties of a reactor pressure vessel steel[J]. Journal of Nuclear Materials,2016,477:246-256.
    [13]
    刘志平,赵丽洋,陈振业,等. 回火温度对Q420qENH钢板组织和力学性能的影响[J]. 上海金属,2023,45(4):56-61.
    [14]
    邹英,刘华赛,韩赟,等. 基于退火路径的中锰钢组织转变与力学性能[J]. 钢铁,2022,57(4):97-104.
    [15]
    Zhao L Y,Wang Q M,Shi G H,et al. The impacts of M/A constituents decomposition and complex precipitation on mechanical properties of high-strength weathering steel subjected to tempering treatment[J]. Journal of Materials Research and Technology,2023,23:2504-2526.
    [16]
    赵贤平,邓深,温小园,等. 回火温度对低碳贝氏体钢Q590组织和冲击性能的影响[J]. 宽厚板,2021,27(1):45-48.
    [17]
    Lan H F,Du L X,Misra R D K. Effect of microstructural constituents on strength-toughness combination in a low carbon bainitic steel[J]. Materials Science and Engineering:A,2014,611:194-200.
    [18]
    Huang W T,Peng H T,Liu Y J,et al. Microstructure evolution and crack initiation behavior of Q450NQR1 high-strength weathering steel in very high cycle fatigue regime[J]. International Journal of Fatigue,2024,185,108366.
    [19]
    Zhou F,Liu L,Chu X H,et al. Study on the evolution of multistage and multiscale Ti-bearing precipitation and microstructure in ultrahigh-strength titanium microalloyed weathering steels[J]. Materials Characterization,2024,217,114368.
    [20]
    杨景红,刘清友,王向东,等. 耐候钢及其腐蚀产物的研究概况[J]. 中国腐蚀与防护学报,2007(6):367-372.
    [21]
    De la Fuente D,Díaz I,Simancas J,et al. Long-term atmospheric corrosion of mild steel[J]. Corrosion Science,2011,53(2):604-617.
    [22]
    Díaz I,Cano H,Lopesino P,et al. Five-year atmospheric corrosion of Cu,Cr and Ni weathering steels in a wide range of environments[J]. Corrosion Science,2018,141:146-157.
    [23]
    Stratmann M,Müller J. The mechanism of the oxygen reduction on rust-covered metal substrates[J]. Corrosion Science,1994,36(2):327-359.
    [24]
    陈爱华,岳重祥,吴圣杰,等. 345MPa级耐候钢中Ni对Cu富集行为的影响[J]. 金属热处理,2015,40(2

    ):35-40.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (22) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return