Volume 40 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
He Minxiu, Xu Caiwei, Zheng Hao, Xu Qigong. Experimental Research on the Fire Resistance of Precast-Cast-in-Place Composite Square Concrete Columns[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(11): 40-46. doi: 10.13206/j.gjgS25081801
Citation: He Minxiu, Xu Caiwei, Zheng Hao, Xu Qigong. Experimental Research on the Fire Resistance of Precast-Cast-in-Place Composite Square Concrete Columns[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(11): 40-46. doi: 10.13206/j.gjgS25081801

Experimental Research on the Fire Resistance of Precast-Cast-in-Place Composite Square Concrete Columns

doi: 10.13206/j.gjgS25081801
  • Received Date: 2025-08-18
  • Publish Date: 2025-11-30
  • An experimental study was conducted to evaluate the fire resistance of two full-scale precast-cast-in-place composite square concrete columns featuring a novel connection method under the ISO 834 standard fire curve. The investigation aimed to examine the differences in failure modes, axial deformation, and fire resistance limits when the core cast-in-place concrete strength was C30 (normal-strength concrete) versus C60 (high-strength concrete). The results demonstrated that the use of high-strength core concrete led to more severe spalling. The precast square tubes provided effective thermal insulation, delaying heat transfer to the core concrete, thereby protecting it and resulting in a smaller loss of bearing capacity. Furthermore, the precast square tubes and the core concrete exhibited synergistic behavior, maintaining excellent structural integrity even at failure. The axial deformations at failure were -25.28 mm for C30 and -19.32 mm for C60, indicating an insignificant difference. However, the fire resistance limits were 121 minutes for C30 and 48 minutes for C60, revealing a significant degradation in fire resistance when high-strength concrete was used in the core. In conclusion, composite columns with normal-strength core concrete possess superior fire resistance compared to those with high-strength core concrete.
  • loading
  • [1]
    刘戈,李楠. 装配式混凝土建筑发展及研究现状[J]. 建筑技术,2020,51(5):542-545.
    [2]
    Lin Y,Chen Z X,Guan D Z,et al. Experimental study on interior precast concrete beam-column connections with UHPC core shells[J]. Structures,2021,32:1103-1114.
    [3]
    Xu C C,Li L,Miramini S,et al. Experimental investigation of the mechanical performance of novel rigid connections in prestressed circular composite precast concrete columns under cycliclateral loading[J]. Journal of Building Engineering,2024,89,109150.
    [4]
    Xu L,Pan J L,Cai J M. Seismic performance of precast RC and RC/ECC composite columns with grouted sleeve connections[J]. Engineering Structures,2019,188:104-110.
    [5]
    Ma C L,Jiang H B,Wang Z Y,Experimental investigation of precast RC interior beam-column-slab joints with grouted spiral-confined lap connection[J]. Engineering Structures,2019,196,109317.
    [6]
    张锡治,张天鹤,章少华,等. 离心预制混凝土管组合柱抗震性能有限元分析与恢复力模型研究[J]. 建筑结构,2023,53(3):52-63.
    [7]
    史继创,田鹏刚,张风亮,等. 装配式混凝土结构湿连接发展现状[J]. 西安建筑科技大学学报(自然科学版),2022,54(6):914-922.
    [8]
    张锡治,章少华,牛四欣. 装配式建筑中预制混凝土管柱的研究与展望[J]. 建筑结构,2018,48(7):79-86.
    [9]
    杨志年,毛震,周云龙,等. 火灾后铁尾矿砂混凝土梁抗弯性能试验研究[J]. 西安建筑科技大学学报(自然科学版),2024,56(2):220-228.
    [10]
    李远哲. 高温下混凝土孔隙压力测试与爆裂试验研究[D]. 郑州:河南工业大学,2014.
    [11]
    黎海峰. 套筒灌浆连接预制混凝土柱的耐火及轴压性能研究[D]. 广州:华南理工大学,2023.
    [12]
    Xu H M,Yu M,Xue C C,et al. Experimental study on fire resistance of precast concrete columns with efficient reinforcement[J]. Engineering Structures,2020,204,109947.
    [13]
    Xu C C,Chen D,Miramini S,et al. Experimental fire performance assessment of a new type of prestressed composite circular precast concrete columns[J]. Engineering Structures,2023,278,115509.
    [14]
    赵东拂,高海静,贾朋贺,等. 高强混凝土经不同高温历程后性能劣化研究[J]. 振动与冲击,2018,37(4):240-248.
    [15]
    孟燕,李逸卓,张航榕,等. 高温下高强混凝土爆裂研究[J]. 电力学报,2021,36(2):182-190.
    [16]
    Kodur V K R,Cheng F P,Wang T C,et al. Effect of strength and fiber reinforcement on fire resistance of high-strength concrete columns[J]. Journal of Structural Engineering,2003,129(2):253-259.
    [17]
    Raut N K,Kodur V K R. Response of high-strength concrete columns under design fire exposure[J]. Journal of Structural Engineering,2011,137(1):69-79.
    [18]
    吴波,唐贵和,王超. 不同受火方式下混凝土柱耐火性能的试验研究[J]. 土木工程学报,2007,40(4):27-31.
    [19]
    杨志年,郭洪晔,付秀艳,等. 不同含水率下钢筋混凝土柱的抗火性能研究[J]. 工业建筑,2018,48(1):68-73.
    [20]
    中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准:GB/T 50081—2019[S]. 北京:中国建筑工业出版社,2019.
    [21]
    中国国家标准化管理委员会. 金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021

    [S]. 北京:中国标准出版社,2021.
    [22]
    中国国家标准化管理委员会. 建筑构件耐火试验方法 第1部分:通用要求:GB/T 9978.1—2008

    [S]. 北京:中国标准出版社,2008.
    [23]
    鲁浈浈,何杨,李林杰. 混凝土高温爆裂性能影响因素及预防措施综述[J]. 火灾科学,2019,28(2):128-134.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (21) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return