Volume 40 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
Zhang Zhenshuo, Liu Xiuli, Guo Chao, Wang Yan, Lu Yang. Finite Element Analysis of the Seismic Performance of Insert-Stiffened Steel Plate Shear Walls[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(11): 32-39. doi: 10.13206/j.gjgS24111401
Citation: Zhang Zhenshuo, Liu Xiuli, Guo Chao, Wang Yan, Lu Yang. Finite Element Analysis of the Seismic Performance of Insert-Stiffened Steel Plate Shear Walls[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(11): 32-39. doi: 10.13206/j.gjgS24111401

Finite Element Analysis of the Seismic Performance of Insert-Stiffened Steel Plate Shear Walls

doi: 10.13206/j.gjgS24111401
  • Received Date: 2024-11-14
  • Publish Date: 2025-11-30
  • The stiffening ribs of steel plate shear walls (SPSWs) are typically welded, which may result in the ribs bearing vertical frame loads, thereby complicating the stress distribution and affecting the seismic performance of the SPSWs. This study proposes a novel insert-stiffened steel plate shear wall that not only effectively mitigates these issues but also improves the wall's ease of assembly. Using finite element analysis via ABAQUS software, finite element models for five different types of SPSWs, including the insert-stiffened steel plate shear wall, were developed to conduct a comparative analysis of their hysteretic behaviors, bearing capacities, energy dissipation capacities, stiffnesses, and deformation characteristics. The results indicated that, compared to unstiffened steel plate shear walls, both welded-stiffener and insert-stiffened steel plate shear walls exhibited a significant increase in ultimate load, with improvements of 13.93% and 18.91%, respectively, demonstrating superior bearing capacity. Furthermore, due to the friction between contact surfaces, the insert-stiffened steel plate shear wall showed a 54.1% increase in total energy dissipation and a 23.7% improvement in its equivalent viscous damping coefficient, indicating exceptional energy dissipation and seismic performance. Although the stiffness of the insert-stiffened steel plate shear wall decreased significantly during the initial loading phase, its initial stiffness remained the highest among all models, with an 11.6% increase compared to the unstiffened steel plate shear wall. This indicated that the inserted stiffening ribs effectively restricted out-of-plane deformations of the steel plate, contributing to its superior seismic performance. As the density of the stiffening rib combination increased, the performance of the insert-stiffened steel plate shear wall was enhanced; however, when the density became excessively high, the rate of performance enhancement slowed. Thus, it is crucial to balance economic considerations and select an optimal stiffening rib combination density in the design.
  • loading
  • [1]
    郭彦林,董全利. 钢板剪力墙的发展与研究现状[J]. 钢结构,2005,20(1):1-6.
    [2]
    郭兰慧,李然,张素梅,等. 薄钢板剪力墙简化分析模型[J]. 工程力学,2013,30(6):149-153.
    [3]
    聂建国,朱力,樊健生,等. 钢板剪力墙抗震性能试验研究[J]. 建筑结构学报,2013,34(1):61-69.
    [4]
    于金光,郝际平. 半刚性连接钢框架-非加劲钢板剪力墙结构性能研究[J]. 土木工程学报,2012,45(8):74-82.
    [5]
    郭彦林,周明,董全利,等. 三类钢板剪力墙结构试验研究[J]. 建筑结构学报,2011,32(1):17-29.
    [6]
    王迎春,郝际平,李峰,等. 钢板剪力墙力学性能研究[J]. 西安建筑科技大学学报(自然科学版),2007(2):181-186.
    [7]
    Haddad O,Sulong N H R,Ibrahim Z. Cyiswic performance of stiffened steel plate shear walls with various configurations of stiffeners[J]. Journal of Vibroengineering,2018,20(1):459-476.
    [8]
    郭彦林,陈国栋,缪友武,等. 加劲钢板剪力墙弹性抗剪屈曲性能研究[J]. 工程力学,2006(2):84-91.
    [9]
    王先铁,白连平,王连坤,等. 方钢管混凝土框架-十字加劲薄钢板剪力墙的力学性能研究[J]. 地震工程与工程振动,2013,33(2):103-109.
    [10]
    Guo H C,Li Y L,Liang G,et al. Experimental study of cross stiffened steel plate shear wall with semi-rigid connected frame[J]. Journal of Constructional Steel Research,2017,135:69-82.
    [11]
    侯蕾. 纵横加劲肋钢板剪力墙试验与理论研究[D]. 西安:西安建筑科技大学,2005.
    [12]
    王应生,贾贵强,王先铁,等. 竖向加劲薄钢板剪力墙的抗侧性能研究[J]. 西安建筑科技大学学报(自然科学版),2020,52(4):495-504.
    [13]
    宋文俊. 竖向荷载对钢板剪力墙性能的影响及钢板剪力墙边缘构件受力性能研究[D]. 西安:西安建筑科技大学,2016.
    [14]
    赵剑丽,赵伟,何欢欢,等. 竖向加劲钢板剪力墙试验研究[J]. 工业建筑,2015,45(5):119-124.
    [15]
    王先铁,刘立达,高娅静,等. 方钢管混凝土框架-斜加劲薄钢板剪力墙的抗震性能试验研究[J]. 西安建筑科技大学学报(自然科学版),2015,47(4):503-510.
    [16]
    郑宏,蔡乐乐,江力强,等. 梯形正交加劲钢板剪力墙抗侧性能分析[J]. 河南科技大学学报(自然科学版),2024,45(2):56-68.
    [17]
    郭昭. 半刚性框架-密肋加劲低屈服点钢板剪力墙试验研究与数值分析[D]. 西安:西安建筑科技大学,2015.
    [18]
    梁朝阳. 钢板剪力墙震后板条密肋修复抗震性能研究及数值分析[D]. 西安:西安建筑科技大学,2019.
    [19]
    中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017—2017[S]. 北京:中国建筑工业出版社,2018.
    [20]
    卢扬. 插肋式钢板剪力墙抗震性能有限元研究[D]. 青岛:青岛理工大学,2021.
    [21]
    李成玉,孙方志,陈焰周,等. 管肋开孔双钢板剪力墙滞回性能研究[J]. 建筑钢结构进展,2025,27(6):44-52.
    [22]
    中华人民共和国住房和城乡建设部. 建筑抗震设计标准:GB/T 50011—2010[S]. 北京:中国建筑工业出版社,2010.
    [23]
    樊秦川,龚小兵,李岩,等. 竖向交替加劲肋对大宽高比钢板剪力墙抗震性能的影响研究[J]. 建筑结构,2023,53(7):9-17.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (26) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return