Jiping Hao, Shaofan Chen, Junfen Yang. Further Discussion on the Development of Steel Structure Theory and the Evolution of Steel Structure Textbooks[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 77-83. doi: 10.13206/j.gjgS24092801
Citation: Jiping Hao, Shaofan Chen, Junfen Yang. Further Discussion on the Development of Steel Structure Theory and the Evolution of Steel Structure Textbooks[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 77-83. doi: 10.13206/j.gjgS24092801

Further Discussion on the Development of Steel Structure Theory and the Evolution of Steel Structure Textbooks

doi: 10.13206/j.gjgS24092801
  • Received Date: 2024-09-28
    Available Online: 2024-11-06
  • This paper was mainly divided into two parts: the development of steel structure theory and the evolution of steel structure textbooks. The first part briefly introduced the calculation theory of steel structure, including steel structure related buckling theory, distortion buckling theory, long-span spatial structure theory, high-strength and high-performance steel structure theory and advanced analysis theory of steel structure. Then the four stages of the development of steel structure design method were briefly introduced. In the second part, firstly, combined with the development and changes of steel structure textbooks in the past 60 years, this paper analyzed the changes of design specifications and structural performance, and pointed out that the performance of steel structure should play a leading role in textbooks. Next, the textbook system was discussed, and it was pointed out that it is more suitable to clarify the basic performance of steel structures by dividing chapters according to limit states than by components. Finally, in order to adapt to the cultivation of innovative talents, steel structure textbooks should not only be a tool for imparting knowledge, but also a platform for developing intelligence and enlightening critical thinking ability.
  • [1]
    沈祖炎, 王烨华, 李元齐. 论结构创新[J]. 同济大学学报(自然科学版), 2010, 38 (1): 1-11.
    [2]
    陈绍蕃. 稳定理论和钢结构设计相结合:三十年来工作和学习的汇报[J]. 建筑结构, 2004(增刊): 48-52, 58.
    [3]
    范志强. 冷弯复杂卷边开孔槽钢梁稳定性能分析[D].沈阳:沈阳建筑大学,2018.
    [4]
    陈绍蕃. 柱段试验与钢压杆的局部-整体相关屈曲[J]. 建筑钢结构进展, 2013, 15(2): 1-5.
    [5]
    陈绍蕃. 钢结构设计原理[M]. 3版. 北京: 科学出版社, 2005.
    [6]
    谷玲培, 李谦. 减震建筑钢结构框架优化设计研究[J/OL]. 机械设计与制造,1-12[2024-09-27

    ].https://doi.org/10.19356/j.cnki.1001-3997.20240511.040.
    [7]
    蒋路, 何保康, 张伟. 冷弯薄壁型钢构件畸变屈曲试验和理论研究综述及分析[J]. 钢结构, 2006, 21(5): 45-49.
    [8]
    陈向明,李新祥,柴亚南,等.复合材料壁板后屈曲设计与分析技术研究进展[J/OL].复合材料学报,1-25[2024-09-27

    ].https://doi.org/10.13801/j.cnki.fhclxb.20240611.003.
    [9]
    姚行友, 李元齐, 沈祖炎. 冷弯薄壁型钢构件畸变屈曲研究现状[J]. 结构工程师, 2010, 26(5): 148-156.
    [10]
    苏明周, 陈绍蕃. 卷边槽钢梁受压翼缘畸变屈曲时的屈曲系数[J]. 西安建筑科技大学学报, 1997, 29 (2): 119-124.
    [11]
    陈绍蕃. 卷边槽钢的局部相关屈曲和畸变屈曲[J]. 建筑结构学报, 2002, 23(1): 27-32.
    [12]
    陈骥. 受弯的冷弯卷边槽钢畸变屈曲强度和其相关屈曲承载力[J]. 建筑钢结构进展, 2009, 11(1): 9-15

    , 27.
    [13]
    何保康, 蒋路, 姚行友, 等. 高强冷弯薄壁型钢卷边槽形截面轴压柱畸变屈曲试验研究[J]. 建筑结构学报, 2006, 27 (1): 10-17.
    [14]
    姚行友, 李元齐, 沈祖炎. 高强冷弯薄壁型钢卷边槽形截面轴压构件畸变屈曲性能研究[J]. 建筑结构学报, 2010, 31 (11): 1-9.
    [15]
    李元齐, 刘翔, 沈祖炎, 等. 高强冷弯薄壁型钢卷边槽形截面轴压构件畸变屈曲控制试验研究[J]. 建筑结构学报, 2010, 31 (11): 10-16.
    [16]
    李元齐, 王树坤, 沈祖炎, 等. 高强冷弯薄壁型钢卷边槽形截面轴压构件试验研究及承载力分析[J]. 建筑结构学报, 2010, 31 (11): 17-25.
    [17]
    董石麟. 中国空间结构的发展与展望[J]. 建筑结构学报, 2010, 31 (6): 38-51.
    [18]
    董石麟, 邢栋, 赵阳. 中国空间结构的发展与展望[J]. 空间结构, 2012, 18 (1): 3-16.
    [19]
    沈世钊. 大跨空间结构理论研究和工程实践[J]. 中国工程科学, 2001, 3 (3): 34-41.
    [20]
    武岳, 杨庆山, 沈世钊. 膜结构分析理论研究现状与展望[J]. 工程力学, 2014, 31 (2): 1-14.
    [21]
    罗尧治. 空间结构形态学[M]. 北京:科学出版社,2022.
    [22]
    沈世钊, 武岳. 结构形态学与现代空间结构[J]. 建筑结构学报, 2014, 35 (4): 1-10.
    [23]
    中华人民共和国住房和城乡建设部. 高强钢结构设计标准:JGJ/T 483—2020[S]. 北京:中国建筑工业出版社,2020.
    [24]
    施刚, 班慧勇, 石永久, 等. 高强度钢材钢结构研究进展综述[J]. 工程力学, 2013, 30 (1): 1-13.
    [25]
    班慧勇, 施刚, 石永久, 等. 建筑结构用高强度钢材力学性能研究进展[J]. 建筑结构, 2013, 43 (2): 88-94

    , 67.
    [26]
    张佳慧, 王佳欣, 谭卓琼,等.超高强钢薄壁开口截面柱屈曲失稳的试验研究[J/OL]. 工程力学,1-11[2024-08-11

    ].https://link.cnki.net/urlid/11.2595.O3.20240221.1533.006.
    [27]
    杨璐, 郭玉莹, 陈琳, 等.超高强度(fy>690 MPa)钢材钢结构研究进展[J/OL]. 钢结构(中英文),1-21[2024-08-11].https://link.cnki.net/urlid/10.1609.TF.20240627.1548.002.
    [28]
    陈爱国, 张佩雲, 蔺军, 等.基于MMC模型的Q460C高强结构钢延性断裂性能研究[J]. 工程力学,2024,41(9):179-190.
    [29]
    戴国欣, 王飞, 施刚, 等.Q345与Q460结构钢材单调和循环加载性能比较[J]. 工业建筑,2012,42(1):13-17

    ,55.
    [30]
    施刚, 王飞, 戴国欣, 等.Q460D高强度结构钢材循环加载试验研究[J].土木工程学报,2012,45(7):48-55.
    [31]
    班慧勇. 高强度钢材轴心受压构件整体稳定性能与设计方法研究[D]. 北京:清华大学, 2012.
    [32]
    Standards Australia. Steel structures:AS 4100-1990[S]. Australian:Intertek Inform, 1990.
    [33]
    王连坤, 郝际平, 李文岭, 等. 钢结构高等分析理论研究综述[J]. 钢结构, 2004,19(增刊): 7-19.
    [34]
    Chen W F, Kim S E. LRFD steel design using advanced analysis[M]. New York: CRC Press, 1997.
    [35]
    陈绍蕃. 钢结构设计规范的回顾与展望[J]. 工业建筑, 2009, 39 (6): 1-4

    , 12.
    [36]
    沈祖炎. 中国《钢结构设计规范》的发展历程[J]. 建筑结构学报, 2010, 31 (6):1-6.
    [37]
    "工程结构"教材选编小组. 钢结构上册[M]. 北京: 中国工业出版社, 1961.
    [38]
    "工程结构"教材选编小组. 钢结构下册[M]. 北京: 中国工业出版社, 1961.
    [39]
    西安冶金建筑学院,重庆建筑工程学院,哈尔滨建筑工程学院,等. 钢结构[M]. 北京: 中国建筑工业出版社, 1980.
    [40]
    陈绍蕃.钢结构[M]. 北京: 中国建筑工业出版社, 1988.
    [41]
    王国周, 瞿履谦. 钢结构:原理与设计[M]. 北京: 清华大学出版社, 1993.
    [42]
    高等学校土木工程专业指导委员会. 高等学校土木工程专业本科教育培养目标和培养方案及课程教学大纲[M]. 北京: 中国建筑工业出版社, 2002.
    [43]
    陈绍蕃,顾强. 钢结构上册:钢结构基础[M]. 北京: 中国建筑工业出版社, 2003.
    [44]
    陈绍蕃. 钢结构下册:房屋建筑钢结构设计[M]. 北京: 中国建筑工业出版社, 2003.
    [45]
    沈祖炎, 陈扬骥, 陈以一. 钢结构基本原理[M]. 北京: 中国建筑工业出版社, 2000.
    [46]
    沈祖炎, 陈以一, 陈扬骥. 房屋钢结构设计[M]. 北京: 中国建筑工业出版社, 2008.
    [47]
    陈绍蕃. 美国房屋钢结构规范几个问题的评论[J]. 建筑钢结构进展, 2012, 14(5): 57-62.
    [48]
    陈绍蕃, 郝际平,顾强. 钢结构上册:钢结构基础[M]. 北京: 中国建筑工业出版社, 2023.
    [49]
    陈绍蕃, 郝际平. 钢结构下册:房屋建筑钢结构设计[M]. 北京: 中国建筑工业出版社, 2023.
  • Relative Articles

    [1]Yihan Wang, Wenwei Fu, Xin Chen, Lihua Tan. Research on Wind Vibration Control of a Long-Span Pedestrian Bridge Based on Comfort Performance[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(12): 86-94. doi: 10.13206/j.gjgS24102802
    [2]Li Ding, Shangrui Jia, Chuqiao Wu, Changsen Xu. Research on Key Technologies of Cantilever Lifting of Large Cantilever Spoke Truss Structure with Inner Support[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(4): 34-40. doi: 10.13206/j.gjgS23013101
    [3]Zhenming Chen, Peng Wang, Minfang Wan, Bing Lin. Engineering Practice of Steel Structure Intelligent Manufacturing Technology[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 80-86. doi: 10.13206/j.gjgS24083025
    [4]Jingfeng Liu, Zhenming Chen, Hongli Yan, Minfang Wan, Lei Jiang. Research Progress and Practice of Steel Structure Connection Technology[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 93-100. doi: 10.13206/j.gjgS24083026
    [5]Xiaoshan Gu. Development and Practice of Steel Structure Technology for Industrial Buildings[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 40-45. doi: 10.13206/j.gjgS24101228
    [6]Shuxin Liu, Yongqian Zhang, Yuan Liu, Hongpeng Sun. Status and Prospect of Boiler Steel Structure Technology Development[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 56-62. doi: 10.13206/j.gjgS24101036
    [7]Bingchuan Tang, Jiepeng Liu. Development of Intelligent Manufacturing Technology for Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 119-126. doi: 10.13206/j.gjgS24052122
    [8]Yinquan Yu, Zhe Wang, Chang Chai, Lijun Wang, Houjun Xu. Overview of China’s Steel Structure Codes and Standards System[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 58-67. doi: 10.13206/j.gjgS24090520
    [9]Xianshun Li, Kai Zhang. Comparative Study on Fireproofing Design of Steel Structures in Petrochemical Industry Between Chinese and American Standards[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(6): 42-47. doi: 10.13206/j.gjgS23041001
    [10]HAN Ming-lan, SHI Jian-hua, SHI Zhen-hai, WANG Yan. Analysis on Seismic Properties of Embedded and Reinforced Prefabricated Connection with Cantilever Beam[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(1): 1-12. doi: 10.13206/j.gjgS22110101
    [11]Wenzhong Wu. Stochastic Response and Controlling to Earthquake Wave in Compound Periodic Steel Structure[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(12): 48-53. doi: 10.13206/j.gjgS23063004
    [12]ZHANG Jin, WANG Li-jun, YANG Lyu-lei, GONG Min-feng. Discussion and Improvement Research on Performance-Based Seismic Design Method for Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(1): 37-65. doi: 10.13206/j.gjgS22121903
    [13]Chuang Zhao, Wenyan Zhao, Zuosheng Cao, Changgang Liu. Research on Integral Lifting of Floating Truss Structure Based on Ring Hoop Reinforcement System[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(7): 41-51. doi: 10.13206/j.gjgS22021001
    [14]Lingxiao Zuo, Weitong Yi, Lei Zhu, Donglin Lyu, Hailin Sun. Methods for Determining Ultimate Bearing Capacity of Steel Beam-Column Joints Based on Moment-Rotation Curves[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(5): 18-27. doi: 10.13206/j.gjgS22031101
    [15]Yansheng Liu, Zhigang Ma, Qingxiang Li, Guanghai Cui. Structural Design of Xumi Mountain in the Second Phase Project of Zhejiang Buddhist College[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(5): 16-23. doi: 10.13206/j.gjgS20061001
    [16]Meijing Liu, Shaoru Zeng, Shenggang Fan. Analysis and Design of Complex Steel Structure of High-Rising Sightseeing Tower[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 56-63. doi: 10.13206/j.gjgS20080502
    [17]Huimin Fu, Bin Ma, Longgui Bu, Yong Wang, Qing Zuo, Duomin Wang, Zhenyong Guo, Wenping Wu, Jianhua Li. Structural Design of Qinghe Station[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(5): 7-15. doi: 10.13206/j.gjgS20072302
    [18]Fei Yin, Lu Yang, Gang Shi, Xiaolin Li. OVERVIEW OF RESEARCH PROGRESS FOR SEISMIC BEHAVIOR OF HIGH STRENGTH STEEL STRUCTURES[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(3): 1-25. doi: 10.13206/j.gjgSE20010805
    [19]Yinquan Yu, Fengqi Zhu, Zhe Wang. Review of the Promotion and Application of Steel Structures in Construction[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(1): 59-69. doi: 10.13206/j.gjgSE19112602
    [20]Ruifeng Li, Xinhua Liu, Guojun Xu. Design Theory Method of Staggered Truss Structure and Research on Assembled Integration Technology Application[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(11): 55-64. doi: 10.13206/j.gjgS20042601
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.2 %FULLTEXT: 13.2 %META: 76.5 %META: 76.5 %PDF: 10.3 %PDF: 10.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 23.1 %其他: 23.1 %Baden: 0.4 %Baden: 0.4 %Central District: 0.4 %Central District: 0.4 %上海: 6.8 %上海: 6.8 %东莞: 1.7 %东莞: 1.7 %六安: 0.4 %六安: 0.4 %兰州: 0.9 %兰州: 0.9 %北京: 5.6 %北京: 5.6 %南京: 1.3 %南京: 1.3 %南昌: 0.4 %南昌: 0.4 %合肥: 0.9 %合肥: 0.9 %哈尔滨: 0.4 %哈尔滨: 0.4 %天津: 0.4 %天津: 0.4 %安康: 0.4 %安康: 0.4 %官坑: 0.4 %官坑: 0.4 %宜宾: 0.4 %宜宾: 0.4 %宣城: 0.4 %宣城: 0.4 %常州: 1.3 %常州: 1.3 %广州: 3.0 %广州: 3.0 %开封: 2.1 %开封: 2.1 %张家口: 11.1 %张家口: 11.1 %成都: 1.7 %成都: 1.7 %无锡: 1.3 %无锡: 1.3 %昆明: 3.4 %昆明: 3.4 %晋城: 0.9 %晋城: 0.9 %杭州: 4.3 %杭州: 4.3 %济南: 1.7 %济南: 1.7 %温州: 0.4 %温州: 0.4 %漯河: 1.3 %漯河: 1.3 %石家庄: 0.9 %石家庄: 0.9 %绍兴: 0.9 %绍兴: 0.9 %芒廷维尤: 4.3 %芒廷维尤: 4.3 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 1.7 %苏州: 1.7 %衡水: 0.4 %衡水: 0.4 %西宁: 5.1 %西宁: 5.1 %西安: 5.1 %西安: 5.1 %达州: 0.4 %达州: 0.4 %运城: 0.4 %运城: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.4 %郑州: 0.4 %鄂州: 0.4 %鄂州: 0.4 %长沙: 2.1 %长沙: 2.1 %其他BadenCentral District上海东莞六安兰州北京南京南昌合肥哈尔滨天津安康官坑宜宾宣城常州广州开封张家口成都无锡昆明晋城杭州济南温州漯河石家庄绍兴芒廷维尤芝加哥苏州衡水西宁西安达州运城邯郸郑州鄂州长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (178) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return