Volume 40 Issue 10
Oct.  2025
Turn off MathJax
Article Contents
Yan Hangyang, Ma Jiefeng, Wu Guosong. Research on Integration of Design and Construction for Spatial Special-Shaped Grid Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(10): 56-64. doi: 10.13206/j.gjgS24092001
Citation: Yan Hangyang, Ma Jiefeng, Wu Guosong. Research on Integration of Design and Construction for Spatial Special-Shaped Grid Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(10): 56-64. doi: 10.13206/j.gjgS24092001

Research on Integration of Design and Construction for Spatial Special-Shaped Grid Structures

doi: 10.13206/j.gjgS24092001
  • Received Date: 2024-09-20
    Available Online: 2025-11-29
  • Spatial special-shaped grid structures have been widely used in long-span structural roofs due to their advantages, such as light self-weight and excellent spatial performance. However, these advantages also imposes higher demands on structural design and construction. A disconnect between the design and construction phases often results in a final build quality that fails to meet the original design intent. In order to address this issue, this paper proposes an integrated design-construction method, using the spatial special-shaped grid roof of the Central Hall at Xi’an Xianyang International Airport as a case study. In the design stage, digital tools were employed to coordinate the relationships between structure and building, as well as those between structure and construction. During the construction stage, numerical simulation was used to analyze the structural behavior. Throughout the project, requirements were considered in advance, and a unified structural model was integrated in the design and construction. This method aims to break the situation of design and construction “working separately” in the traditional mode. By integrating these processes, it ensures structural safety and quality, thereby demonstrating the value of synergy and efficiency.
  • loading
  • [1]
    杨伊浩,刘福成. 钢结构网架施工技术应用及质量控制措施[J]. 建筑技术开发,2019,46(18):14-15.
    [2]
    贾斌,赖伟,魏明宇. 防屈曲技术在某网架加固工程中的应用[J]. 建筑钢结构进展,2017,19(8):98-104.
    [3]
    陈柯,李迅涛,吴兵,等. 结构参数化建模在大跨空间钢结构中的应用[J]. 土木建筑工程信息技术,2021,13(2):145-152.
    [4]
    孙浩,姜安庆,缪仁卿,等. 基于EPC的BIM技术在设计-施工一体化中的综合应用[J]. 建筑结构,2024,54(8):151-158.
    [5]
    张涛,苏凯,孙逸飞,等. 龙湖国际中心北楼高空叠挑叠缩钢结构设计与施工一体化技术研究[J]. 建筑结构,2022,52(增刊1):2956-2960.
    [6]
    张慎,尹鹏飞. 基于Rhino+Grasshopper的异形曲面结构参数化建模研究[J]. 土木建筑工程信息技术,2015,7(5):102-106.
    [7]
    魏颖,赵海涛,李健,等. 基于Rhino的结构参数化建模[J]. 钢结构,2014,29(1):75-77.
    [8]
    周观根,刘扬. 国家游泳中心钢结构施工技术[J]. 钢结构,2006,21(3):1-5.
    [9]
    黄晓康,程泽豪,魏大江,等. CAD二次开发在复杂网架安装方法分析中的应用[J]. 建筑结构,2022,52(增刊2):639-642.
    [10]
    李志超,余衫钰,章波,等. 基于.NET API的CAD二次开发技术在工程中的应用[J]. 制造业自动化,2013,35(8):122-124.
    [11]
    蒋元星. 基于C#的AutoCAD二次开发技术研究及应用[J]. 中国制造业信息化,2007(17):34-37.
    [12]
    胡鹏华,张文津,胡晓华,等. 大跨度钢结构施工过程的数值模拟与二次开发[J]. 建筑钢结构进展,2025,27(1):106-113.
    [13]
    陶兵进. 某机场航站楼屋盖施工模拟分析研究[J]. 广东土木与建筑,2023,30(2):82-85.
    [14]
    李东方,王立长,曲鑫藩. 大连国际会议中心施工模拟计算分析[J]. 建筑结构,2012,42(2):54-57.
    [15]
    蔡俊. 大跨度钢网架结构整体提升施工关键技术应用研究[D]. 广州:华南理工大学,2016.
    [16]
    陈冬冬. 大跨度网架结构整体提升技术研究与应用[D]. 重庆:重庆大学,2010.
    [17]
    崔佳慧,邵冰,邹海涛,等. 不同施工工艺下周边支承网架结构附加应力分布及安全性研究[J]. 建筑钢结构进展,2023,25(6):85-96.
    [18]
    杜丹,潘剑峰,刘晓斌,等. 中建·光谷之星1300m“回”字形连廊群提升施工技术[J]. 钢结构(中英文),2019,34(9

    ):87-90.
    [19]
    陈尧文,赖庆文,夏恩德,等. 贵阳龙洞堡国际机场T3航站楼屋盖结构设计[J]. 建筑结构,2021,51(增刊1):447-451.
    [20]
    周金良,李红现,梁建军,等. 大型机场航站楼北连接体钢结构屋盖提升施工模拟分析[J]. 施工技术(中英文),2023,52(8):16-22.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return