Volume 40 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
Zhang Guicheng, Luo Jintao, Wang Hui, Chang Haosong, Bai Wenxuan, Zhang Zengbing, Zhu Boshuang. Field Testing and Research on the Operational Load of the Steel Ash Hopper in a Coal-Fired Power Plant[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(11): 13-21. doi: 10.13206/j.gjgS24022601
Citation: Zhang Guicheng, Luo Jintao, Wang Hui, Chang Haosong, Bai Wenxuan, Zhang Zengbing, Zhu Boshuang. Field Testing and Research on the Operational Load of the Steel Ash Hopper in a Coal-Fired Power Plant[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(11): 13-21. doi: 10.13206/j.gjgS24022601

Field Testing and Research on the Operational Load of the Steel Ash Hopper in a Coal-Fired Power Plant

doi: 10.13206/j.gjgS24022601
  • Received Date: 2024-02-26
  • Publish Date: 2025-11-30
  • Through a two-stage field test involving ash storage and discharge in a coal-fired power plant's ash hopper, the test data and phenomena including stress in the hopper's stiffeners and wall, as well as wall displacement, were analyzed. Field measurements were compared with finite element simulations. Subsequently, the stress state of the ash hopper under both the test load and the full ash load conditions was analyzed using numerical simulations and Design Code of Steel Structures for ESP (JB/T 12127-2015) calculations. The calculation method for the stiffeners was also discussed. The results showed that the maximum dynamic stress at the test point was 147 MPa, and the test load was only 37% of the full ash load. During stable operation of the dust collector, the temperature of the ash hopper was mainly affected by the ambient environment.The thermal stress generated in the structure under temperature effects was non-negligible and should be considered in engineering design. According to the JB/T 12127-2015, the design method for stiffeners exhibited significant errors and did not align with reality. Calculation based on a closed-frame model was demonstrated to be more rational.
  • loading
  • [1]
    陈耀亮. 灰斗结构采用大挠度理论计算方法研究[J]. 机电技术,2016(3):33-37.
    [2]
    湖南华银株洲发电有限公司“9·22”除尘器垮塌事故调查组. 大唐华银株洲发电有限公司“9·22”除尘器垮塌事故调查报告[R]. 株洲:湖南省株洲市应急管理局,2022.
    [3]
    马钢炼铁总厂脱硫装置“2022·2·6”较大坍塌事故调查组. 马钢炼铁总厂脱硫装置“2022·2·6”较大坍塌事故调查报告[R]. 合肥:安徽省应急管理厅,2022.
    [4]
    上海外高桥发电有限责任公司“2·15”除尘器坍塌较大事故调查组. 上海外高桥发电有限责任公司“2·15”除尘器坍塌较大事故调查报告[R]. 上海:上海市应急局,2022.
    [5]
    薛慧中,张鑫,夏风敏. 钢结构除尘器灰斗受力分析与参数研究[J]. 工业建筑,2023,53(增刊1):269-272.
    [6]
    国家能源局综合司. 关于上海外高桥发电有限责任公司除尘器坍塌事故的通报[R]. 北京:国家能源局,2022.
    [7]
    肖春. 脉冲袋式除尘器本体钢结构设计方法及优化设计研究[D]. 北京:北京交通大学,2008.
    [8]
    鲁浩. 燃煤电厂袋式除尘器的优化仿真设计研究[D]. 保定:华北电力大学,2013.
    [9]
    吴昊,徐榕. 灰斗的强度分析[J]. 机械设计与研究,2012,28(2):93-95.
    [10]
    王永刚. 电除尘器的结构优化设计[D]. 洛阳:河南科技大学,2017.
    [11]
    陈建来,丁晓红,王峰,等. 大型电除尘器灰斗结构分析及优化设计[J]. 矿山机械,2008,36(15):102-105.
    [12]
    张辰茜,赵建昌. 新型梁斗合一电除尘器灰斗试验研究与分析[J]. 机械设计与研究,2018,34(6):188-192.
    [13]
    中华人民共和国工业和信息化部. 电除尘器钢结构设计规范:GB/T 12127—2015[S]. 北京:机械工业出版社,2015.
    [14]
    中华人民共和国住房和城乡建设部. 钢筒仓技术规范:GB 50884—2013[S]. 北京:中国计划出版社,2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (28) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return