Volume 40 Issue 12
Dec.  2025
Turn off MathJax
Article Contents
Peng Haoxuan, Jing Haiquan, He Xuhui. Numerical Simulation Study of Temperature Effects of Cable Forces and Module Frames in Cable-Supported Photovoltaic Power Stations[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(12): 8-15. doi: 10.13206/j.gjgS23122102
Citation: Peng Haoxuan, Jing Haiquan, He Xuhui. Numerical Simulation Study of Temperature Effects of Cable Forces and Module Frames in Cable-Supported Photovoltaic Power Stations[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(12): 8-15. doi: 10.13206/j.gjgS23122102

Numerical Simulation Study of Temperature Effects of Cable Forces and Module Frames in Cable-Supported Photovoltaic Power Stations

doi: 10.13206/j.gjgS23122102
  • Received Date: 2023-12-21
    Available Online: 2026-01-09
  • Publish Date: 2025-12-31
  • The cable-supported photovoltaic (PV) power station structure uses suspension cables instead of traditional steel beams to support PV modules, representing a novel application of cable structures. Temperature effects are also a critical load for cable structures: under high temperatures, thermal expansion of the cables causes a reduction in cable force, which affects the overall structural geometry and stiffness; under low temperatures, thermal contraction increases cable force, impacting the structure’s bearing capacity. However, to date, scientists and engineers have conducted limited research on the temperature effects of cable-supported PV power stations. This paper systematically analyzed and studied the cable force and temperature effects on module frames in cable-supported PV power stations. It proposed empirical formulas to analyze the temperature effects on cable force and to determine the cable force without temperature effects, for two types of cable-supported PV power stations under various conditions. The accuracy of these empirical formulas was validated by comparing them with finite element analysis (FEA) results. The use of these formulas to calculate cable force reduced the need for finite element computation, improving the design efficiency of cable-supported PV power station structures. Furthermore, this study revealed the stress distribution patterns of PV module frames under temperature effects. Without cable structures, the most critical stress location on the PV module frame was at the junction of the long and short edges, showing a “concave” stress distribution. With cable structures, under cooling conditions, the critical stress location was at the connection between the frame and the prestressed steel strand, exhibiting an “M”-shaped stress distribution. Under heating conditions, the critical stress location shifted to the junction of the long and short edges, with a “W”-shaped stress distribution.
  • loading
  • [1]
    丁爽,姜玲玲,林翎,等. 我国碳达峰碳中和标准化发展现状及对策研究[J]. 中国标准化,2022(1):63-70.
    [2]
    《今日科技》杂志社. 做好科技支撑“双碳”工作科技部等九部门印发最新实施方案[J]. 今日科技,2022(9):23.
    [3]
    胡云岩,张瑞英,王军. 中国太阳能光伏发电的发展现状及前景[J]. 河北科技大学学报,2014,35(1):69-72.
    [4]
    Baumgartner F P,Büchel A,Bartholet R. Solar wings:a new lightweight PV tracking system[J/OL]. Engineering,Environmental Science,2008[ 2008-11-01]. http://doi.org/10.4229/23RDEUPVSEC2008-4DO.9.5.
    [5]
    Baumgartner F P,Büchel A,Bartholet R. Experiences with cable-based solar wings tracking system and progress towards two-axis large scale solar systems[C]// Proceedings of the 24th European Photovoltaic Solar Energy Conference. Hamburg:Germany,2009.
    [6]
    Baumgartner F P,Carigiet F,Graf U,et al. Urban plant light-weight solar system for parking and other urban double use applications[J/OL]. Engineering,Environmental Science,2013[ 2013-11-22]. http://dx.doi.org/10.21256/ZHAW-4896.
    [7]
    Baumgartner F P,Büchel A,Bartholet R. Solar ski lift PV carport and other solar wings cable based solutions[C]//Proc. 27th European Photovoltaic Solar Energy Conf. Frankfart:2015:4343-4347.
    [8]
    He X H,Ding H,Jing H Q,et al. Wind-induced vibration and its suppression of photovoltaic modules supported by suspension cables[J]. Journal of Wind Engineering & Industrial Aerodynamics,2020,206,104275.
    [9]
    He X H,Ding H,Jing H Q,et al. Mechanical characteristics of a new type of cable-supported photovoltaic module system[J]. Solar Energy,2021,226:408-420.
    [10]
    丁昊,何旭辉,敬海泉,等. 索支撑光伏支架材料和荷载分项系数研究[J/OL]. 工程力学,2025[ 2025-01-11]. http://kns.cnki.net/kcms/detail/11.2595.o3.20240304.1523.028.html.
    [11]
    李寿英,马杰,刘佳琪,等. 柔性光伏系统颤振性能的节段模型试验研究[J/OL]. 土木工程学报,2024[ 2024-03-04]. http://kns.cnki.net/kcms/detail/ 11.2595.o3.20240304.1423.022.html.
    [12]
    敬海泉,彭浩轩,何旭辉. 索支撑光伏电站索力温度效应及其简化分析模型[J/OL]. 工程力学,2024[ 2024-04-09]. https://link.cnki.net/urlid/11.2595.o3.20240304.1423.022.html.
    [13]
    纪寅峰,彭浩轩,邹创. 单层索支撑光伏电站索力温度效应简化计算方法[J/OL]. 中文科技期刊数据库(全文版)工程技术,2025[ 2025-01-11]. https://www.cqvip.com/doc/journal/3469949672.
    [14]
    Kodur V,Naser M Z. Fire hazard in transportation infrastructure:Review,assessment,and mitigation strategies[J]. Frontiers of Structural and Civil Engineering,2021,15:46-60.
    [15]
    Kotsovinos P,Judge R,Walker G,et al. Fire performance of structural cables:Current understanding,knowledge gaps,and proposed research agenda[J]. Journal of Structural Engineering,2020,146(8),03120002.
    [16]
    杜咏,严芙蓉. 火灾下平行钢丝束温度膨胀及高温蠕变试验研究[J]. 工程力学,2021,38(8):66-74.
    [17]
    中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009—2012[S]. 北京:中国建筑工业出版社,2012.
    [18]
    中华人民共和国住房和城乡建设部. 索结构技术规程:JGJ 257—2012[S]. 北京:中国建筑工业出版社,2012.
    [19]
    陈太聪,马海涛,苏成. 拉索静力状态的高精度无迭代求解方法研究[J]. 工程力学,2013,30(3):244-250.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (22) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return