Volume 40 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
Du Hongwei, Sun Guojun, Hao Weifeng, Wu Jinzhi. Research on the Working Mechanism of Internal Steel Wires in a 1×19 Galfan-Coated Cable During Loading[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(11): 47-54. doi: 10.13206/j.gjgS22061101
Citation: Du Hongwei, Sun Guojun, Hao Weifeng, Wu Jinzhi. Research on the Working Mechanism of Internal Steel Wires in a 1×19 Galfan-Coated Cable During Loading[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(11): 47-54. doi: 10.13206/j.gjgS22061101

Research on the Working Mechanism of Internal Steel Wires in a 1×19 Galfan-Coated Cable During Loading

doi: 10.13206/j.gjgS22061101
  • Received Date: 2022-06-11
  • Publish Date: 2025-11-30
  • In recent years, with the development of prestressed spatial structures, Galfan-coated steel cables have been widely used in engineering applications due to their excellent corrosion resistance and fire performance. To gain an in-depth understanding of the mechanical behavior of cables under complex loading conditions and the interaction mechanisms among internal steel wires, this study establishes a three-dimensional refined finite element model of a 1×19 Galfan-coated steel cable to simulate and analyze its mechanical response under axial tension and tension-bending coupling. The model defines the constitutive relation of the Galfan-coated steel wires, considers the contact between wires, utilizes rigid body coupling for boundary condition setting, and validates the accuracy of the finite element model by comparing it with experimental data. Analysis of the finite element simulation results reveals that: under axial tension, the influence of the friction coefficient on the contact pressure between wires varies with location; the Poisson effect and mutual misalignment between wires lead to a decrease in contact pressure, and the influence of the friction coefficient subsequently diminishes; the stress development in the wires is significantly affected by the lay angle, with the center wire (having no lay angle) exhibiting the fastest stress growth, while the outer layer wires grow slower due to the circumferential grip-wrapping effect; under tension-bending coupling, the variation trend of contact pressure is noticeably influenced by position, with the area below the center wire showing rapid growth due to greater tensile force, while the area above the center wire first decreases in contact pressure due to compression and then increases as the transverse load becomes dominant; furthermore, the stress distribution during cable bending exhibits significant inhomogeneity, with stress concentration areas being particularly prominent at the fixed ends and transverse load application regions, where alternating tension and compression is evident. The results indicate that the internal stress and contact pressure distribution of the cable under complex loading exhibit complex patterns; during tension, the wire lay angle plays a dominant role in stress development, while the bending effect significantly alters the distribution patterns of contact pressure and stress in the cable wires.
  • loading
  • [1]
    薛素铎. 中国空间结构的近期发展与工程实践[J]. 钢结构(中英文),2020,35(7):1-16.
    [2]
    侯佩. 高钒索在预应力钢结构中的施工应用[J]. 科技创新与应用,2018(7):149-150.
    [3]
    陈冲,袁行飞,蒋淑慧,等. 钢绞线静力拉伸模型建立和截面特性分析[J]. 华中科技大学学报(自然科学版),2016,44(12):13-17.
    [4]
    彭崇梅,张启伟,李元兵. 多层半平行钢丝索静力拉伸模型及参数分析[J]. 华南理工大学学报(自然科学版),2013,41(8):115-119.
    [5]
    江培睿,赵勇霖,王荣辉,等. 钢绞线拉索弹性模量修正及其对缆索体系桥梁的影响[J]. 贵州大学学报(自然科学版),2021,38(4):119-124.
    [6]
    孙国军,袁军,吴金志. 新型钢绞线拉索几何抗弯刚度试验研究[J]. 建筑材料学报,2020,23(4):927-933.
    [7]
    孙国军,郑向红,薛素铎,等. 钢拉索拉-弯耦合效应受力性能研究[J]. 天津大学学报(自然科学与工程技术版),2017,50(增刊1):36-41.
    [8]
    马军,葛世荣,张德坤. 钢丝绳股内钢丝的载荷分布[J]. 机械工程学报,2009,45(4):259-264.
    [9]
    任俊超. 轴向力作用下Galfan拉索截面径向位移分析[J]. 建筑结构,2020,50(3):105-108.
    [10]
    贾如钊. 基于多尺度模型的钢绞线索风致疲劳数值仿真研究[D]. 上海:上海交通大学,2020.
    [11]
    权鑫鑫. 平行钢丝束的弯曲性能研究[D]. 天津:天津大学,2019.
    [12]
    余玉洁,陈志华,王霄翔. 拉索半精细化有限元模型及其敏感性分析[J]. 天津大学学报(自然科学与工程技术版),2015,48(5):96-101.
    [13]
    巩同川. 基于精细化模型的钢拉索力学性能研究[D]. 北京:北京工业大学,2016.
    [14]
    中华人民共和国住房和城乡建设部. 索结构技术规程:JGJ 257—2012[S]. 北京:中国建筑工业出版社,2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (24) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return