Design of the Upper Steel Structure and Ultimate Bearing Capacity Analysis of Intersecting Joints of the Emei Nanshan Bridge
-
摘要: 峨眉南山大桥上部钢结构工程的显著特点为大桥两侧的曲形钢柱各自斜交,在顺桥轴线方向上形成两片单层斜交网壳,并通过桁架及钢梁将这两片网壳相连,使其在垂直于桥轴线方向上形成一种特殊的空间钢结构。在此基础上通过2片单层网壳与2根“悬链梁”设计双曲屋面形态,以满足方案造型要求。针对下部“X”型曲柱,采用ABAQUS CAE进行整体稳定性分析,得出该结构满足整体稳定性要求,并采用MIDAS/Gen的直接分析法进行构件截面设计;针对屋盖“悬链梁”结构进行了正风压下的强度应力分析与负风压下的稳定性分析,得出“悬链梁”满足结构设计要求;针对方钢管相贯节点,采用已有的试验结果对有限元分析方法进行了验证,并开展了相贯节点极限承载力分析,节点极限承载力为2.2倍的最不利荷载设计值,满足设计要求。Abstract: The distinctive feature of the upper steel structure project of the Emei Nanshan Bridge is that the curved steel columns on both sides of the bridge are skewed. Two single-layer diagonal lattice shells are formed along the bridge’s axis, and the two are connected through trusses and steel beams, forming a unique space steel structure in the direction perpendicular to the bridge’s axis. On this basis, the hyperbolic roof shape was designed through two single-layer lattice shells and two "catenary beams" to meet the design requirements of the scheme. For the lower "X" shaped curved column, ABAQUS CAE was used to conduct an overall stability analysis, and it was concluded that the structure met the overall stability requirements; MIDAS Gen was then used to conduct component section design using the direct analysis method. For the roof "catenary beam" structure, a strength stress analysis under positive wind pressures and a stability analysis under negative wind pressures were conducted, and it was concluded that the "catenary beam" met the structural design requirements. For the intersecting joints of square steel pipes, ABAQUS CAE software was used to analyze the ultimate bearing capacity of the intersecting joints, and the existing test results were used to verify the finite element analysis method. The ultimate bearing capacity of the joints was 2.2 times the design value of the most unfavorable load, which met the design requirements.
-
[1] 中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017—2017[S]. 北京:中国建筑工业出版社,2018. [2] 中华人民共和国住房和城乡建设部. 建筑抗震设计标准:GB/T 50011—2010[S]. 北京:中国建筑工业出版社,2024. [3] 中华人民共和国住房和城乡建设部. 空间网格结构技术规程:JGJ 7—2010[S]. 北京:中国建筑工业出版社,2010. [4] 董石麟,罗尧治,赵阳. 新型空间结构分析、设计与施工[M]. 北京:人民交通出版社,2006. [5] 李常虹,陈志强,肖克艰,等. 成都双流机场T2航站楼钢结构屋盖相贯节点极限承载力分析[J]. 建筑结构,2010,40(9):20-22. [6] 周鹏. 空间KX型圆管相贯节点极限承载力分析[D]. 重庆:重庆大学,2007. [7] Gu B,Qian X D,Ahmed A. A toughness based deformation limit for X-and K-joints under brace axial tension[J]. Frontiers in Structural and Civil Engineering,2016,10(3):345-362. [8] Liu J T,Yan S,Zhao X Z. Simulation of fracture of a tubular X-joint using a shear-modified Gurson-Tvergaard-Needleman model[J]. Thin-Walled Structures,2018(132):120-135. [9] 陈以一,王伟,赵宪忠,等. 圆钢管相贯节点抗弯刚度和承载力实验[J]. 建筑结构学报,2001,22(6):25-30. [10] 舒兴平,朱正荣,王元清. N型方圆钢管相贯节点足尺试验研究[J]. 建筑结构学报,2006,27(1):66-89. -

计量
- 文章访问数: 20
- HTML全文浏览量: 2
- PDF下载量: 2
- 被引次数: 0