Analysis on the Mechanical Behavior of RC Column to Truss Joint in Staggered Truss System
-
摘要: 交错桁架结构体系最早于20世纪60年代出现于美国,并得到了广泛应用,典型的交错桁架结构体系主要由柱、楼板及平面桁架等构件组成,柱可采用H型钢柱、钢管柱、钢管混凝土柱等,楼板可以采用空心楼板、叠合楼板、现浇钢筋混凝土楼板等,桁架可以采用空腹式桁架、帕式桁架或混合式桁架。该结构体系具有开间大、施工便捷、经济、高效、环保等优势,同时其结构质量轻、整体受力性能好,柱内力一般较小,导致采用钢柱时设计控制指标通常为长细比,造成了材料的浪费。预制钢筋混凝土(reinforced concrete,RC)柱具有实心截面且施工便捷的优势,运用在交错桁架结构体系中,可以更充分地利用柱的力学性能,进而提高交错桁架结构体系的经济效益。然而,要实现RC柱的应用必须先实现柱-桁架节点的可靠连接。中建科技有限公司设计开发了采用预制RC柱、钢桁架和预应力混凝土楼板的装配式交错桁架结构,重庆大学对该结构体系进行了静力弹塑性分析,以评估其抗震性能。国内外学者对交错桁架结构体系中的桁架及结构体系抗震性能进行了大量的试验研究与理论分析,但对于交错桁架结构体系节点仅少量学者进行了一些较为初步的研究,且主要针对钢或钢管混凝土柱-桁架节点。
为研究交错桁架体系中RC柱与桁架连接节点的受力性能,基于ABSQUS有限元软件,针对该工程中采用的典型RC柱-桁架节点,即RC柱与上弦杆和斜腹杆连接处的牛腿加预埋板式节点,建立了有限元模型,对其在结构设计分析中出现的5种最不利工况下的应力分布、斜腹杆荷载-位移曲线以及弦杆截面内力进行了分析,主要研究参数包括RC柱轴压比、是否限制弦杆水平位移及斜腹杆的受力情况。研究结果表明:1)杆件内力可通过节点板传至牛腿或预埋钢板,再通过锚杆传至柱内,传力路径明确,节点设计合理。2)各类杆件均先于节点区钢筋屈服,满足“强节点,弱构件”的设计要求。3)不释放弦杆水平位移的工况中,弦杆和斜腹杆强度利用更充分,柱中钢筋应力发展程度较释放弦杆水平位移的工况弱。4)不释放弦杆水平位移时,由于此时弦杆和斜腹杆强度利用更充分,柱中钢筋应力发挥程度不高,因此承载力和位移均更大;轴压比为0的工况中,斜腹杆荷载在位移为5 mm之前随位移线性增大,5 mm之后由于节点区塑性变形增长,荷载随位移增长速率减慢。5)峰值荷载时,除轴压力为0工况的剪力外,其他工况下弦杆的弯矩和剪力均较小;限制弦杆水平位移的工况下的弦杆轴力明显大于释放弦杆水平位移的工况,且斜腹杆峰值荷载提高约10%。6)为减轻由于牛腿造成的柱偏心效应,建议适当增加钢筋混凝土的纵筋配筋率,以提高其安全储备。-
关键词:
- 钢筋混凝土柱-交错桁架结构 /
- 节点 /
- 应力 /
- 内力 /
- 荷载-位移曲线
Abstract: The staggered truss structural system originated from America in the 1960s, which has been widely used. Typical staggered truss structural system consists of columns, floors, plane trusses, etc. The H-shaped steel, steel pipe, and concrete-filled steel tube (CFT) can be used as structural columns. The slabs can be designed to be hollow slab, composite slab, cast-in-place reinforced concrete slab, etc. In addition, there are three typical types of trusses, i. e. open-web truss, parker truss, and hybrid truss. This structural system has advantages of large space, light structural weight, convenient construction process, economic benefits, high efficiency, and environmentally friendly. In addition, the structure has light weight and good integrity, resulting in a small internal force of the column. When steel columns are used, the slenderness ratio is usually considered as the design control condition, resulting in a waste of materials. The precast reinforced concrete (RC) column is characterized by solid section and convenient construction process. Application of precast RC column into the staggered truss structural system can make better use of the mechanical properties of the column and improve economic benefits of this type of structural system. However, a robust column to truss joint is necessary for the application of RC columns. China Construction Science & Technology Co., Ltd., designed and developed a prefabricated staggered truss structural system consisting of RC columns, steel trusses and pre-stressed concrete floor. The inelastic static analysis of this structural system was conducted by Chongqing University to evaluate its seismic performance. A host of experimental and theoretical studies have been conducted to investigate the seismic performance of the truss and staggered truss structural system. For the column to truss joint of staggered truss structural system, preliminary investigations are still limited, and previous studies mainly focused on the mechanical performance of steel or CFT column to truss joint.
In this study, a finite element model (FEM) is established to investigate the mechanical behavior of the proposed RC column to truss joint used in a practical project. The stress distribution, internal force and loaddisplacement curves of the joint under five kinds of most unfavorable working conditions in the structural analysis are analyzed. The investigated parameters include the axial load ratio of RC column, with/without restriction of chord horizontal displacement, and load condition of web members. The results are as follows:1) The internal force of the member can be transferred to the corbel or embedded steel plate through the gusset plate and then transferred to the column through the anchor bars, demonstrating that the joint is designed reasonably with a clear force transfer path. 2) All kinds of members yield before of reinforcement within the joint region, meeting the design requirement of "strong joint and weak member". 3) The material strength of the chord and web is better used in the case where the horizontal displacement of the chord is restricted despite of a lower degree of reinforcement stress development in the RC column. 4)The load bearing capacity and displacement are greater in the cases where the horizontal displacement of the chord is not released, which is benefit from a better use of material strength of the chord and web member. In the case whose axial load ratio is 0, the load of the web member increases approximately linearly with increasing the displacement of the web member at the initial loading stage. The plastic deformation within the joint region gradually increases once the displacement of the web member exceeds 5 mm, resulting in a slower increase of the load of the web member. 5) The bending moment and shear force of the chord are generally small in all working conditions except for the shear force in the case whose axial load ratio is 0. The axial force of the chord is significantly larger in the cases where the horizontal displacement is restricted and the axial force of the chord increases by approximately 10%. 6) It is suggested to appropriately increase the longitudinal reinforcement ratio of the RC column to alleviate the eccentric effect of the column caused by the corbel, further improve its safety reserve.-
Key words:
- RC column-staggered truss structure /
- joints /
- stress /
- internal force /
- load-displacement curve
-
曹子旭. 近场地震作用下钢交错桁架结构体系的抗震性能评估[D]. 苏州:苏州科技大学,2016. 朱玉祥. 交错桁架结构的抗震性能研究[D]. 合肥:安徽建筑大学,2017. 颜於滕. 装配式交错桁架钢结构体系的设计与应用[J]. 上海建设科技,2019(4):16-18. 甘丹,周绪红,周期石. 交错桁架钢框架结构抗震性能研究现状[J]. 建筑钢结构进展,2019,21(4):1-10. Basha H S, Goel S C. Special truss moment frames with vierendeel middle panel[J]. Engineering Structures, 1995, 17(5):352-358. Parra-montesinos G J, Goel S C, Kim K Y. Behavior of steel double-channel built-up chords of special truss moment frames under reversed cyclic bending[J]. Journal of Structural Engineering, 2006, 132(9):1343-1351. Simasathien S, Jiansinlapadamrong C, Chao S H. Seismic behavior of special truss moment frame with double hollow structural sections as chord members[J]. Engineering Structures, 2017, 131(15):14-27. 冉红东,赵道程,梁文龙,等. 交错桁架延性段双槽钢组合截面弦杆往复弯曲性能试验研究[J]. 建筑结构学报, 2017, 38(7):34-41. 赵宝成,周德昊,顾强,等. 偏心腹杆式交错桁架结构滞回性能试验研究[J]. 工程力学,2013,30(12):71-77. 赵宝成,计明明,顾强,等. 被动消能交错桁架滞回性能试验[J]. 沈阳建筑大学学报(自然科学版), 2013, 29(1):7-15. Gupta R P, Goel S C. Dynamic analysis of staggered truss framing system[J]. Journal of the Structural Division, 1972, 98(7):1475-1492. Hanson R D, Berg G V. Aseismic design of staggered truss buildings[J]. Journal of the Structural Division,1974, 100(1):175-193. Ger J F, Cheng F Y, Lu L W. Collapse behavior of Pino Suarez Building during 1985 Mexico City earthquake[J]. Journal of Structural Engineering, 1993, 119(3):852-870. 郭兵,张帅,刘川川,等. 空腹式延性桁框结构探讨[J]. 建筑钢结构进展,2013,15(1):1-7. Goel S C, Itani A M. Seismic-resistant special truss-moment frames[J]. Journal of Structural Engineering, 1994, 120(6):1781-1797. 潘英,周绪红. 交错桁架体系的抗震性能动力分析[J]. 土木工程学报,2002,35(4):12-16. 周期石,周绪红,刘永健. 交错桁架结构动力特性的简化分析方法[J]. 建筑科学与工程学报,2006,23(4):28-33. 许红胜,周绪红,刘永健. 影响交错桁架整体延性的结构因素[J]. 建筑科学与工程学报,2006,23(2):52-56. 张勇,张崇厚,刘彦生. 多层与高层错列桁架钢结构体系抗侧力性能对比[J]. 清华大学学报(自然科学版),2007,47(12):2100-2104. 张崇厚,张勇,刘彦生. 高烈度地震区的错列双桁架钢结构住宅体系[J]. 清华大学学报(自然科学版), 2008, 48(6):926-930. 郭庆生,杨庆山. 错列式钢桁架结构受填充墙影响的抗震研究[J]. 北京交通大学学报,2012,36(1):68-72. 陈向荣,宗智芳,冉红东. 基于能量平衡的延性交错桁架塑性设计方法[J]. 地震工程与工程振动,2015,35(4):236-243. 苏明周,金峰华,王喆,等. 竖向荷载下套管节点装配式交错桁架受力性能研究[J]. 西安建筑科技大学学报(自然科学版), 2015,47(6):781-787. 卢林枫,顾强,苏明周,等. 钢结构错列桁架节点构造与设计要点[J]. 工业建筑,2005,35(7):83-85,79. 李启才,何若全,顾强,等. 交错桁架体系中桁架与柱的连接节点设计方法研究[J]. 建筑钢结构进展,2008,10(4):39-42. 宋小武. 装配式交错桁架体系桁架与柱连接节点滞回性能试验研究[D]. 西安:西安建筑科技大学,2015. 中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社,2010. 钟善桐. 钢管混凝土结构[M]. 3版. 北京:清华大学出版社,2003.
点击查看大图
计量
- 文章访问数: 293
- HTML全文浏览量: 89
- PDF下载量: 18
- 被引次数: 0