Effects of Water Cooling Process on the Microstructure and Properties of Stainless Steel Clad Plates for Weathering Bridges
-
摘要: 采用控轧控冷(TMCP)+弛豫+回火工艺开发生产了耐候桥梁用不锈钢复合板,研究了3种水冷工艺对复合板组织和性能的影响。结果表明:不同水冷工艺下,复合板基层碳钢组织均为粒状贝氏体+准多边形铁素体+珠光体;随着入水温度的降低,复合界面处基层的脱碳层变宽,基层中的先共析铁素体比例增加,强度降低,特别是屈服强度由572 MPa降至527 MPa,屈强比由0.87降至0.83;入水温度相同时,随着返红温度的降低,贝氏体转变更充分,抗拉强度由658 MPa提高至710 MPa,但屈服强度变化不大,从而降低屈强比,达到316L+Q500qENH的性能要求。Abstract: Stainless steel clad plates for weathering bridges were developed using thermo-mechanical control processing(TMCP) along with relaxation and tempering processes. The effects of three different water cooling processes on the microstructure and properties of clad plates were studied. The results showed that the microstructure of the carbon steel substrate consisted of granular bainite, quasi-polygonal ferrite, and pearlite under all tested water cooling conditions. As the water entry temperature decreased, the decarburized layer at the carbon steel substrate at the clad interface became wider, and the volume fraction of proeutectoid ferrite in the substrate increased, resulting in a decrease in strength, especially a reduction in yield strength from 572 MPa to 527 MPa, and then a reduction in yield ratio from 0.87 to 0.83. At a constant water entry temperature, a lower self-tempering temperature promoted a more complete bainitic transformation. This increased the tensile strength from 658 MPa to 710 MPa, while the yield strength remained largely unchanged, thereby reducing the yield ratio and meeting the performance requirements for the 316L+Q500qENH composite system.
-
Key words:
- stainless steel clad plate /
- weathering bridge steel /
- water cooling process /
- microstructure /
- property
-
[1] 李恒坤,崔强,邓伟,等. 500MPa级高性能桥梁结构用钢的研发[J]. 宽厚板,2016,22(1):5-10. [2] 吴勇,刘自成. 500MPa级低屈强比桥梁用钢板的开发[J]. 宝钢技术,2016(5):74-77. [3] 白星,钱亚军,刘吉文,等. 低屈强比桥梁用钢Q420qE的研究与开发[J]. 金属热处理,2019,44(8):106-109. [4] 曾周燏,江姗,李东晖. TMCP工艺轧制桥梁用不锈钢复合板的组织与性能[J]. 中国冶金,2017,27(6):19-23. [5] Sun J H,Liu X F,Yang Y H,et al. Interfacial gradient M7C3 carbides precipitation behavior and strengthening mechanisms of stainless steel/carbon steel clad plates[J]. Journal of Materials Research and Technology,2022,21:3476-3488. [6] Tang Z H,Stumpf W. The effect of microstructure and processing variables on the yield to ultimate tensile strength ratio in a Nb-Ti and a Nb-Ti-Mo line pipe steel[J]. Material Science and Engineering:A,2008,490:391-402. [7] 郑东升,朱伏先,李艳梅,等. 空冷弛豫对铌微合金化热轧多相钢组织性能的影响[J]. 钢铁,2011,46(4):70-75. [8] 武凤娟,杨浩,邵伟,等. 热轧后的冷却方式对Q500qE桥梁钢板屈强比的影响[J]. 上海金属,2020,42(4):11-17. [9] 黄乐庆,王彦锋,狄国标,等. 回火温度对F/B结构钢组织及性能的影响[J]. 钢铁,2017,52(9):79-83. [10] 牛延龙,刘清友,贾书君,等. 低合金管线钢组织、裂纹扩展及韧性研究[C]// 中国金属学会低合金钢分会第四届低合金钢学术年会论文集. 2018:210-217. [11] 谢广明,骆宗安,王光磊,等. 真空轧制不锈钢复合板的组织和性能[J]. 东北大学学报,2011,32(10):1398-1401. [12] 王寅鹏,高博,魏伟,等. 材质与冷却速度对耐候桥梁钢-不锈钢热轧复合界面组织与性能的影响[J]. 工业建筑,2024,54(12):18-25. [13] Xie G M,Luo Z A,Wang H G,et al. Microstructure and mechanical properties of heavy gauge plate by vacuum cladding rolling[J]. Advanced Materials Research,2010,97/ 98/ 99/ 100/ 101:32-35. [14] Bain E C,Aborn R H,Rutherford J J B. The nature and prevention of intergranular corrosion in austenitic stainless steels[J]. Transactions of the American Society for Steel Treating,1933,21:481-509. [15] Alam M K,Islam M A,Alili S,et al. The importance of steel chemistry and Thermal history on the sensitization behavior in austenitic stainless steels:experiment and modeling assessment[J]. Journal of Materials Research and Technology,2021(15):4274-4287. -
点击查看大图
计量
- 文章访问数: 22
- HTML全文浏览量: 7
- PDF下载量: 1
- 被引次数: 0



登录
注册
下载: