Research on Seismic Performance Evaluation Indexes of Box-Section Steel Members Based on Strains
-
摘要: 为精确评估方形截面钢构件的变形能力,提出基于塑性区应变的抗震性能评价指标,对6个方形截面钢构件开展了低周往复试验,研究试件的破坏模式和滞回性能,提取试件极限变形和塑性区长度以获得试件应变延性系数。试验结果表明:所有试件破坏形式为翼缘和腹板依次出现局部屈曲变形,两者的变形过程相互协调;滞回曲线均呈梭形且较为饱满,耗能能力较好;方形截面钢构件极限应变和应变延性系数随着板件宽厚比和轴压比的增大逐渐减小。基于试验结果验证了有限元模型的有效性,通过开展参数化分析研究了翼缘宽厚比、腹板高宽比和轴压比对应变延性系数的影响。研究表明:方形截面钢构件应变延性系数随着翼缘宽厚比、腹板高厚比和轴压比的增大呈现下降趋势。通过回归分析提出应变延性系数的建议计算式,验证了计算式的有效性。Abstract: The study aimed to evaluate the deformation capacity of box-section steel members. The strain ductility coefficient, a stain-based evaluation index, was proposed for box-section steel members. tests quasi-static were conducted oedsix box-section steed mombers, the experimental failure modes and hysteretic responses were investigated, and the ultimate deformation and plastic zome length of the specimers were extracted to obtain the strain dultility coefficients. The results show that the failure mode of all specimens involved local buckling deformation of both the flanges and webs, and the deformation processes of the two were coordinated with ench other. All specimens had full hysteresis curves with no significant pinching phenomenon, demonstrating good ductility and energy dissipation capacity. The ultimate strains and strain ductility coefficients of box sections decreased with the increase of the width-to-thickness ratio and axial compression ratio. Based on the test results, validated and reliable finite element models were established, and parametric studies were conducted to investigate the effects of flange width-to-thickness ratio, web height-to-thickness ratio, and axial compression ratio on the strain ductility coefficients. The results indicated that the strain ductility coefficients of box-section steel members exhibitsed a decreasing trend with the increase in flange width-to-thickness ratio, web height-to-thickness ratio, and axial compression ratio. The regression analysis was conducted to establish a calculation recommendation formula for the strain ductility coefficients. The validity of the formula was verified.
-
[1] 周晓夫,康艳博,张荣强,等.近现代建筑及抗震技术发展与现代建筑发展趋势综述[J].建筑科学,2021,37(1):114-120. [2] 中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社,2018. [3] 中华人民共和国住房和城乡建设部.建筑抗震设计标准:GB/T 50011—2010[S].北京:中国建筑工业出版社,2024. [4] 崔济东.RC梁、柱及剪力墙变形性能指标限值研究与试验验证[D].广州:华南理工大学,2017. [5] 张谨,舒赣平,杨律磊,等.基于应变的受弯与压弯钢构件抗震性能评价方法研究[J].建筑钢结构进展, 2023, 25(8):26-37. [6] 张谨,舒赣平,杨栋,等.受弯钢构件基于曲率的延性评价指标研究[J].建筑结构学报,2023,44(6):148-159. [7] Zhang J, Shu G P, Yang D,et al.Estimation of deformation capacity of steel beam-columns based on strain ductility coefficient[J].Structures, 2022,46:1517-1531. [8] Xu Y, Wu B, Zheng B.Full-field geometric imperfection and effect on cross-section capacity of circular steel tubes[J].Journal of Constructional Steel Research, 2023,201,107749. [9] 全国钢标准化技术委员会.金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1—2021[S].北京:中国标准出版社,2021. [10] American Institute of Steel Construcion. Seismic provisions for structural steel buildings:ANS/AISC 341-16[S]. Illinois: AISC, 2016. [11] 员方.柱表面三维变形高精度测量系统与分析方法[D].南京:东南大学,2022. [12] 石永久,王萌,王元清.循环荷载作用下结构钢材本构关系试验研究[J].建筑材料学报,2012,15(3):293-300. [13] 中华人民共和国住房和城乡建设部. 钢结构工程施工质量验收标准:GB/T 50205—2020[S].北京:中国计划出版社,2020. [14] European Convention for Constructional Steelworks. Manual on stability of steel structures: part 2.2. mechanical properties and residual stresses[S]. 2nd ed., Bruxelles: ECCS Publ., 1976. -

计量
- 文章访问数: 38
- HTML全文浏览量: 10
- PDF下载量: 2
- 被引次数: 0