The Current Situation and Prospects of the Development of the Nuclear Power Steel Structure Technology
-
摘要: 核电钢结构技术在全球核能利用中占据核心地位,其发展历程经历了从早期的轻水堆结构到当前三代乃至四代核电技术的先进应用。1980—2024年间,核电钢结构技术显著进步,设计理念从单一安全性向安全性与经济性双重优化转变,材料科学、制造工艺及施工技术不断创新。高强度钢材、耐腐蚀材料的应用,以及数字化、自动化技术的融合,提升了核电钢结构的安全性与经济性。然而,极端环境下材料性能的保持、施工工艺与质量控制、防腐问题及全寿命周期内的维护管理仍面临挑战。未来,核电钢结构技术将朝着智能化、轻量化、绿色化方向发展,新材料研发、数字化建造技术及国际合作将成为关键。通过应对挑战,核电钢结构技术有望为实现核电产业的可持续发展提供坚实支撑。Abstract: Nuclear power steel structure technology occupies a central position in the global utilization of nuclear energy, and its development has gone through the advanced application of light water reactor structures in the early stage to the current third-generation and even fourth-generation nuclear power technology. From 1980 to 2024, the technology of nuclear power steel structure has made significant progress, the design concept has changed from single safety to dual optimization of safety and economy, and the material science, manufacturing process and construction technology have been continuously innovated. The application of high-strength steel and corrosion-resistant materials, as well as the integration of digital and automation technologies, has improved the safety and economy of nuclear power steel structures. However, challenges remain in maintaining material performance under extreme conditions, ensuring construction quality and quality control, addressing corrosion issues, and managing maintenance throughout the entire lifecycle. In the future, nuclear power steel structure technology will develop towards intelligent, lightweight and green direction, and new material research and development, digital construction technology and international cooperation will become the key. By addressing challenges, nuclear power steel structure technology is expected to provide solid support for the sustainable development of the nuclear power industry.
-
[1] Adamantiades A, Kessides I. Nuclear power for sustainable development: current status and future prospects[J]. Energy Policy, 2009,37(12):5149-5166. [2] Medel C, Ji T. Seismic protection technology for nuclear power plants: a systematic review[J]. Journal of Nuclear Science and Technology,2015,52(5):607-632. [3] Baldev R, Kamachi M U, Vijayalakshmi M, et al. Development of stainless steels in nuclear industry: with emphasis on sodium cooled fast spectrum reactors history, technology and foresight[J].Advance Materials Research,2013,794:3-25. [4] Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: challenges and opportunities[J]. Journal of Nuclear Materials,2008,383(1/2):189-198. [5] Majumdar D. Nuclear power in the 21st century: status & trends in advanced nuclear technology development[C]//Nuclear Power Technology Development Section, Division of Nuclear Power, Department of Nuclear Energy, IAEA.Vienna, Austria: 2002. [6] 常福增,赵备备,李兰杰,等.钒钛磁铁矿提钒技术研究现状与展望[J].钢铁钒钛,2018,39(5):71-78. [7] 方秋生.二硫化钼涂覆技术的研究现状与发展趋势[J].现代制造技术与装备,2017(6):36-37. [8] 孙昊延,朱庆山,李洪钟.钒钛磁铁矿流态化直接还原技术现状与发展趋势[J].过程工程学报,2018,18(6):1146-1159. [9] 宋伟,乔东.煤矿开采技术现状及发展趋势[J].中国资源综合利用,2020,38(6):114-116. [10] 郭等锋.有色金属材料成型加工技术现状与发展研究[J].中国金属通报,2023(5):10-12. [11] 刘宝胜,吴为,曾元松,等.板材与管材压力辅助成形技术发展现状[J].精密成形工程,2016,8(5):23-34. [12] 魏子清,陈旭东,魏俊卿.钢铁能源管理系统发展现状与展望[J].冶金能源,2017,36(增刊2):8-9. [13] 许学良,马伟斌,蔡德钩,等.铁路隧道检测与监测技术的现状及发展趋势[J].铁道建筑,2018,58(1):14-19. [14] 周知进,王宗正,林家祥,等.钛合金切削加工研究现状及发展趋势[J].工具技术,2022,56(10):3-11. [15] 赵志伟,刘克明.模具制造技术的发展现状与展望[J].热处理技术与装备,2016,37(6):69-72. [16] 王军.高性能钨合金制备技术研究现状[J].有色金属材料与工程,2019,40(4):53-60. [17] 郭雪飞,孙洋洲,刘强,等.石墨烯储能应用的技术进展及产业化现状[J].炭素技术,2020,39(1):19-23. [18] 张开华,李肇基,谢孟贤,等.微电子技术的发展现状与展望[J].微电子学,1992(1):1-13. [19] 刘斌,崔志杰,谭景焕,等.模具制造技术现状与发展趋势[J].模具工业,2017,43(11):1-8. [20] 杨馥瑄.我国铁合金生产技术的现状和发展研究[J].中国金属通报,2019(1):11,13. [21] 王海风,郦秀萍,周继程,等.钢铁工业节能技术发展现状及趋势[J].冶金能源,2018,37(4):3-8. [22] 果成龙.钢铁工业节能技术发展现状及趋势[J].冶金管理,2019(7):120,141. [23] 李俊生,王静.河钢邯钢家电板生产技术现状及发展趋势[J].河北冶金,2019(6):29-31. [24] 李晓,周园园,郝阳,等.我国炼钢工艺现状与发展趋势分析[J].冶金经济与管理,2018(3):51-55. [25] 白玉峰,赵忠贤,孙伟鹏,等.沿海电厂钢结构防腐蚀技术现状及发展趋势[J].腐蚀与防护,2019,40(4):293-298. [26] 林书振,张欢欢,冯文静.钢铁轧制技术的进步与发展趋势探索[J].南方金属,2018(3):1-2,7. [27] 马加波.对轧钢技术发展的研究与探讨[J].中国金属通报,2019(10):6-7. [28] 樊恩想,刘小欣,廖文俊,等.金属增材制造的现状与发展[J].机械制造,2019,57(4):1-6,10. [29] 陆平军.中国钢铁行业的现状和展望[J].市场论坛,2019(3):71-72,79. [30] 唐堃,金虹,潘广宏,等.钛酸锂电池技术及其产业发展现状[J].新材料产业,2015(9):12-17. [31] 舒赣平,姚震.江苏省装配式钢结构建筑的技术发展现状与方向[J].江苏建筑,2023(1):7-12. [32] 王喆,王琼,张红,等.我国装配式钢结构住宅技术现状与发展[J].中国住宅设施,2019(3):86-93,122. [33] 王则奋,黄科林,柳春,等.电解金属锰技术现状及发展趋势[J].大众科技,2019,21(6):26-28. [34] 潘韵,焦远帆,仵桂仓,等.我国钢结构的应用与发展前景[J].现代经济信息,2018(1):349. [35] 李普明,张德金,袁勇.钢铁粉末的发展现状与展望[J].粉末冶金工业,2019,29(2):1-6. [36] 黄维,胡云鹏,黄宝.中国钢铁工业运行现状与展望[J].冶金经济与管理,2018(3):20-23. [37] 金妙,刘宁,刘爱军,等.钢的热处理数值模拟技术的现状与发展[J].热处理,2019,34(1):23-28. [38] 王海瑞.冶金电气自动化技术的发展现状与趋势[J].中国金属通报,2019(3):6-7. [39] 吴文斌.钢铁熔融渣余热利用技术发展现状与展望[J].企业科技与发展,2019(4):66-67. [40] 赵玮.煤化工技术发展现状及其新型技术研究[J].化工管理,2021(28):94-95.
点击查看大图
计量
- 文章访问数: 15
- HTML全文浏览量: 3
- PDF下载量: 1
- 被引次数: 0