Numerical Analysis on Lateral Performance of Modular Structures Based on a Sparse-Component Frame Filled with Two Stories of Modules
-
摘要: 钢结构模块建筑是一种新兴的装配式建筑,但现有的模块结构体系难以满足高层建筑以及大层高、大跨度建筑空间的应用要求。为增加模块建筑的适用高度及改进其建筑性能,提出了一种双层模块填充稀疏钢框架建筑体系,然而采用现有方法对该体系进行结构分析和设计不利于节约用钢量。为此,通过研究填充模块单元后整体结构的抗侧性能,进而得到模块单元的刚度贡献规律,以提升新型模块建筑体系设计的经济性。采取ABAQUS有限元分析软件对2层模块单元叠箱、稀疏钢框架以及填充2层模块单元的整体箱框结构进行建模计算,通过对比分析得到模块单元叠箱自身抗侧刚度、叠箱对整体结构侧向刚度的实际贡献。考虑了单元、框架构件截面尺寸,模块单元-稀疏框架连接节点(箱框连接节点)刚度以及每跨框架填充模块单元列数等因素,对整体箱框结构抗侧性能的影响,并提出了侧向刚度增强系数α、模块单元刚度修正系数βM、箱框连接节点影响修正系数βRF及框架空间效应修正系数βSP,分别反映各类因素的影响规律。结果表明:模块单元对整体抗侧性能的贡献不可以忽略(α>0),当箱框连接节点采用螺栓连接节点时,模块单元实际贡献的侧向刚度略小于自身刚度,对填充单列模块单元的情况,模型修正系数βM平均值为0.937;当箱框连接节点为焊接时,模块单元刚度贡献有所提升(βRF=1.340~1.352)。此外,尚应考虑框架空间效应,导致稀疏框架受力平面外模块单元部分贡献刚度存在折减(本例中βSP=0.799~0.907)。Abstract: Modular integrated construction(MIC) is an innovative prefabricated building, but current modular structural systems fail to satisfy the requirements of high-rise buildings with large storey height and long span. To improve the applicable height and the building performance, a new structure based on a sparse-component frame (SCF) filled with two stories of modules is proposed, however, traditional design methods will be adverse to steel reduction and cost efficiency. Therefore, the lateral performance of the global structure filled by modules remains to be investigated, and the module stiffness contribution can be obtained to improve the design economy for the new MIC.In this paper, a numerical analysis on two-storey stacked modules, SCF, and the frame-module structure combing the modules and SCF was conducted using nonlinear FE software(ABAQUS), the numerical results were compared to differentiate the intrinsic stiffness of stacked modules from their real stiffness contribution to the frame-module structure. Moreover, the effects of the member section sizes of modules and frames, the module-to-frame connection(M2FC) stiffness, and the row number of modules were studied;to illustrate the specific influencing factors, the lateral stiffness augmented factor α, module stiffness correction factor βM, M2FC-related correction factor βRF, and the space-frame-related correction factor βSP were all proposed.The results indicated that the contribution of modules to the overall lateral resistance was non-negligible(i.e., α>0). However, the real lateral stiffness contribution of stacked modules was slightly lower than the intrinsic values when the M2FC was designed with bolted connections, where the factor βM averaged 0.937 for the structure filled with one single row of modules; when the M2FC turned to welded type, the module stiffness contribution increased, with the factor βRF ranging from 1.340 to 1.352. Besides, the space frame effect should be considered to reduce the stiffness contribution for modules outside the loading plane of the SCF, with the factor βSP ranging from 0.799 to 0.907.
-
[1] 郝际平,薛强,郭亮,等. 装配式多、高层钢结构住宅建筑体系研究与进展[J]. 中国建筑金属结构,2020(3):27-34. [2] 刘倩,杨淑娟,郁有升,于德湖. 模块化装配式建筑发展现状与未来展望[J]. 青岛理工大学学报,2021,42(5):35-40,48. [3] 李爱群,周通,缪志伟. 模块化建筑体系研究进展[J]. 工业建筑,2018,48(3):132-139. [4] Luo H B,Liu J J,Li C Q,et al. Ultra-rapid delivery of specialty field hospitals to combat COVID-19:lessons learned from the Leishenshan Hospital project in Wuhan[J]. Automation in Construction 2020,119,103345. [5] 陈志华,钟旭,余玉洁,等. 多层模块钢结构住宅项目关键技术及实践[J]. 建筑技术,2018,49(4):372-376. [6] Thai H T,Ngo T,Uy B. A review on modular construction for high-rise buildings[J]. Structures,2020(28):1265-1290. [7] Andrew W L,Chen W S,Hao H,et al. Structural response of modular buildings:an overview[J]. Journal of Building Engineering,2018,16:45-56. [8] Li G Q,Cao K,Lu Y,et al. Effective length factor of columns in non-sway modular steel buildings[J]. Advanced Steel Construction,2017,13(4):412-426. [9] Chen Z H,Khan K,Khan A,et al. Exploration of the multidirectional stability and response of prefabricated volumetric modular steel structures[J]. Journal of Constructional Steel Research,2021,184,106826. [10] Zhong X,Chen Z H,Liu J D,et al. Experimental research on the in-plane performance of discontinuous modular diaphragms[J]. Thin-Walled Structures,2022,173,108905. [11] Srisangeerthanan S,Hashemi M J,Rajeev P,et al. Numerical study on the effects of diaphragm stiffness and strength on the seismic response of multi-story modular buildings[J]. Engineering Structures,2018,163:25-37. [12] Srisangeerthanan S,Hashemi M J,Rajeev P,et al. Review of performance requirements for inter-module connections in multi-story modular buildings[J]. Journal of Building Engineering,2020,28,101087. [13] 陈红磊,陈琛,李国强. 模块化建筑钢结构模块间新型节点及其承载性能[J]. 建筑钢结构进展,2022,24(4):15-23. [14] Dai Z Q,Cheong T Y C,Pang S D,et al. Experimental study of grouted sleeve connections under bending for steel modular buildings[J]. Engineering Structures,2021,243,112614. [15] Chen Z H,Li H X,Chen A,et al. Research on pretensioned modular frame test and simulations[J]. Engineering Structures,2017,151:774– 787. [16] Annan C D,Youssef M A,El Naggar M H. Experimental evaluation of the seismic performance of modular steel-braced frames[J]. StructuresEngineering,2009,31(7):1435-1446. [17] 李豫明模块化钢结构单边螺栓连接节点力学性能研究天津天津大学2018李豫明. 模块化钢结构单边螺栓连接节点力学性能研究[D]. 天津:天津大学,2018. [18] 王小盾,丛子怡,刘佳迪. 角件旋转式模块单元连接节点抗拉性能研究[J]. 建筑结构,2021,51(13):93-101,118. [19] Yang N X,Xia J W,Chang H F,et al. A novel plug-in self-locking inter-module connection for modular steel buildings[J]. Thin-Walled Structures,2023,187,110774. [20] Park H K,Ock J H. Unit modular in-fill construction method for high-rise buildings[J]. KSCE Journal of Civil Engineering,2016,20(4):1201-1210. [21] 陈浩钟旭张明亮等基于稀疏框架的装配式模块建筑及其关键问题工业建筑20252025-05-13陈浩,钟旭,张明亮,等. 基于稀疏框架的装配式模块建筑及其关键问题[J/OL]. 工业建筑,2025[ 2025-05-13]. http://kns.cnki.net/kcms/detail/11.2068.TU.20230911.1218.002.html. -

计量
- 文章访问数: 14
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0