Research Process in Seismic Design of Building Steel Structures
-
摘要: 中国抗震设计起步较晚,但在经历了几次重大地震后,通过吸收国外经验和自主研究,逐步建立了完整的抗震设计体系,其中也体现在钢结构领域。目前,我国钢结构抗震设计采用"三水准、两阶段"的设计方法,并已发展出基于性能的抗震设计理念。本文梳理了国内外建筑钢结构抗震设计的历史演进和最新进展,分别从我国钢结构抗震技术的历史发展过程、当前主流技术和对该领域技术的未来展望三个不同角度全面阐述了我国在钢结构抗震设计领域从无到有、从落后到逐步与世界接轨的发展过程。同时对不同时期国外发达国家在相关技术上的主要突破进行了简要概述。通过对比可见,我国钢结构抗震设计技术在过去的几十年内得到了快速的发展,但同时也论述了我国尚存的不足。最后,对我国未来在钢结构抗震相关技术和规范的发展方向给出了明确的建议。Abstract: China’s seismic design started late, but after experiencing several major earthquakes, it has gradually established a comprehensive seismic design system through the absorption of foreign experiences and independent research, resulting in significant progress in the field of steel structures. Currently, China’s steel structure seismic design adopts the "three-level, two-stage" approach and has developed a performance-based seismic design philosophy. This paper reviews the historical evolution and latest advancements in seismic design for building steel structures both domestically and internationally. It comprehensively explains China’s development process in steel structure seismic design from scratch, from lagging behind to gradually aligning with world standards, through three perspectives: the historical development of China’s steel structure seismic technology, current mainstream technologies, and future prospects for this field. On the other hand, this paper provides a brief overview of major breakthroughs in relevant technologies from developed countries at different periods. Through comparison, it is evident that China’s steel structure seismic design technology has rapidly developed over the past few decades, but the paper also discusses the existing shortcomings. Finally, clear recommendations are provided for the future development of steel structure seismic-related technologies and standards in China.
-
[1] 中央纺织工业部设计公司翻译组. 地震区建筑规范[M]. 北京:纺织工业出版社,1957. [2] American Society of Civil Engineers. Minimum design loads for building and other structures: ASCE 7-10[S]. USA: ASCE, 1957. [3] Veletsos A S, Newmark N M, Chelapati C V. Deformation spectra for elastic and elastoplastic systems subjected to ground shock and earthquake motions[C]//Proceedings of the Third World Conference on Earthquake Engineering. Wellinton, New Zealand: 1965:663-680. [4] Veletsos A S. Maximum deformations of certain nonlinear systems[C]//Proceedings of the 4th World Conference on Earthquake Engineering. Santiago: Chile, 1969:155-170. [5] 中华人民共和国建设部. 工业与民用建筑抗震设计规范(试行):TJ 11—74[S]. 北京: 中国建筑工业出版社, 1974. [6] 中华人民共和国建设部. 工业与民用建筑抗震设计规范:TJ 11—78[S]. 北京: 中国建筑工业出版社, 1978. [7] 罗开海, 保海娥, 左琼. 我国建筑抗震设防水准的历史沿革、现状及展望[J]. 地震工程与工程振动, 2018, 38(4):41-47. [8] 王亚勇, 戴国莹. 《建筑抗震设计规范》的发展沿革和最新修订[J]. 建筑结构学报, 2010, 31(6):7-16. [9] 翟长海, 谢礼立. 抗震规范应用强度折减系数的现状及分析[J]. 地震工程与工程振动, 2006, 26(2):1-7. [10] American National Standards Institute. Uniform building code: UBC[S]. USA: ANSI,1957. [11] Newmark N M, Hall W J. Seismic design criteria for nuclear reactor facilities[C]//Proceedings of the 4th World Conference on Earthquake Engineering. Santiago: Chile, 1969:37-50. [12] Newmark N M, Hall W J. A rational approach of seismic design standards for structures[C]//Proceedings of the 5th World conference on Earthquake Engineering. San Francisco: USA, 1973. [13] 国土交通省住宅局. 建築基準法令集[M]. 東京: 日本建築学会, 1971. [14] 中华人民共和国建设部. 建筑抗震设计规范:GBJ 11—89[S]. 北京: 中国建筑工业出版社, 1989. [15] American Institute of Steel Construction. Seismic provisions for structural steel buildings: AISC 341-89[S]. USA:AISC, 1989. [16] 中华人民共和国建设部. 建筑抗震设计规范:GB 50011—2001[S]. 北京: 中国建筑工业出版社, 2001. [17] 中华人民共和国建设部. 高层民用建筑钢结构技术规程:JGJ 99—98[S]. 北京:中国建筑工业出版社, 1998. [18] Arroyo-Espinoza D, Teran-Gilmore A. Strength reduction factors for ductile structures with passive energy dissipating devices[J]. Journal of Earthquake Engineering, 2003, 7(2):297-325. [19] Tong G S, Z Y F. Seismic force modification factors for modified-clough hysteretic model[J]. Engineering Structures, 2007, 29(11):3053-3070. [20] Building Seismic Safety Council. NEHRP recommended provisions for seismic regulations for new buildings and other structures[R]. USA, Washington: Building Seismic Safety Council National Institute of Building Science, 2004. [21] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2010. [22] 中华人民共和国住房和城乡建设部. 高层民用建筑钢结构技术规程:JGJ 99—2015[S]. 北京:中国建筑工业出版社, 2015. [23] 杨俊芬. 中心支撑钢框架的结构影响系数和位移放大系数研究[D]. 西安: 西安建筑科技大学, 2009. [24] 陆懿, 顾强. 多层抗弯钢框架的结构影响系数[J]. 苏州科技学院学报(工程技术版), 2008, 21(4):1-4. [25] 李宏, 刘正辉. 地震区钢结构设计的关键问题探讨[J]. 地震工程与工程振动, 2013, 33(5): 45-52. [26] Elnashai A S, Guan L J. Seismic performance of steel portal frames with semi-rigid connections[J]. Journal of Structural Engineering, 2004, 130(5): 779-788. [27] Zhu Z, Xu W. Seismic behavior of steel portal frames with semi-rigid connections[J]. Steel and Composite Structures, 2020, 36(4): 507-518. [28] 中华人民共和国住房和城乡建设部. 钢结构设计标准: GB 50017—2017[S]. 北京: 中国建筑工业出版社, 2018. [29] 肖明葵. 基于性能的抗震结构位移及能量反应分析方法研究[D]. 重庆: 重庆大学, 2004. [30] 李慧. 中、美、欧、日建筑抗震规范地震作用对比研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. [31] 李赫, 罗超英, 刘军, 等. 中美抗震规范的差异对比研究[J]. 建筑结构, 2011, 41(9):123-126. [32] Fang C, Wang W, Qiu C X, et al.Seismic resilient steel structures: A review of research, practice, challenges and opportunities[J]. Journal of Constructional Steel Research, 2022,191:107-145. [33] 施刚, 胡方鑫, 石永久. 各国规范钢框架结构抗震设计方法对比研究 (Ⅰ):设防目标与地震作用[J]. 建筑结构, 2017, 47(2):1-6. [34] 施刚, 胡方鑫, 石永久. 各国规范钢框架结构抗震设计方法对比研究(Ⅱ):承载力、延性与侧移要求[J]. 建筑结构, 2017, 47(2):7-15.
点击查看大图
计量
- 文章访问数: 146
- HTML全文浏览量: 7
- PDF下载量: 20
- 被引次数: 0