Experimental Research on Mechanical Properties of Welded Joints of Q500qD High-Strength Cold-Rolled Circular Steel Tubes
-
摘要: 针对Q500级高强钢钢管在工程应用中研究不足的问题,通过对其进行材料性能试验及焊接工艺研究,得出:Q500qD钢板冷加工卷管后,屈服强度和抗拉强度提高,屈强比略有增大,特别是其延性有所降低;冲击功满足GB/T 1591—2018《低合金高强度结构钢》要求,表明冷加工后韧性良好;采用药芯焊丝进行同种钢对接焊时,焊缝抗拉强度达标且断口位于焊缝,验证了屈服强度匹配原则的有效性;Q500qD与Q355B异种钢焊接接头抗拉强度及冲击功均符合GB/T 50661—2011《钢结构焊接规范》。结果表明,高强钢屈强比随牌号升高而增大,建议工程中优先选用建筑结构用钢板并优化焊接参数(同种钢按屈服、异种钢按抗拉等强进行匹配),以保障结构的安全性和可靠性。Abstract: In order to solve the problem of insufficient research on the engineering application of Q500 high-strength steel tubes, this paper conducted the material performance test and welding process research, the results showed that: after cold processing of Q500qD steel plates, the yield strength and tensile strength increased to 585-591 MPa and 700-715 MPa, respectively, the yield ratio increased to 0.82-0.84, while the ductility decreased. The impact energy (219-233 J at -20 ℃) met the requirements of High Strength Low Alloy Structural Steels (GB/T 1591-2018), indicating good toughness after cold working. When T624T1-1C1A-N3M1 welding wires were used for the same steel butt welding, the tensile strength of the weld met the standard requirements, and the fracture occurred in the weld, which verified the validity of the yield strength matching principle. The tensile strength and impact power of Q500qD and Q355B dissimilar steel welded joints met the requirements of Code for Welding of Steel Structures (GB/T 50661-2011). The research showed that the yield ratio of high-strength steel increased with the increase of the grade. It is suggested that the steel plate used in building structure should be preferred in the project, the welding parameters should be optimized (the same steel should be matched according to yield, and the dissimilar steel should be strengthened according to tensile strength) to ensure the safety and reliability of the structure.
-
[1] 中华人民共和国住房和城乡建设部. 钢结构焊接规范:GB/T 50661—2011[S]. 北京:中国建筑工业出版社,2011. [2] 戴为志,刘景凤. 建筑钢结构焊接技术:“鸟巢”焊接工程实践[M]. 北京:化学工业出版社,2007. [3] 戴为志,刘景风,高良. 建筑钢结构焊接应用技术及案例[M]. 北京:化学工业出版社,2016. [4] 高树栋,李久林,马德志,等. 国家体育场钢结构工程 Q460E-Z35 特厚板焊接技术研究[J]. 工业建筑,2008,38(7):85-88. [5] 蒋联民,胡湘红. Q460 高性能钢表面裂纹的分析[J]. 宽厚板,2007,13(1):19-23. [6] 梁楠伟,刘德义,刘世程. 热处理对Q460E低合金结构钢组织与性能的影响[J]. 大连交通大学学报,2008,29(1):84-88. [7] 黄东鎏. Q460E焊接性能分析及匹配焊材研究[D]. 西安:西安理工大学,2008. [8] 邱德隆,高树栋,芦广平,等. Q460E-Z35 钢焊接性试验及工艺评定[J]. 电焊机,2008,38(4):26-50. [9] 贾良玖,董洋. 高性能钢在结构工程中的研究和应用进展[J]. 工业建筑,2016,46(7):1-9. [10] 李国强. 高强结构钢连接研究进展[J]. 钢结构(中英文),2020,35(6):1-40. [11] 中国国家标准化管理委员会. 低合金高强度结构钢:GB/T 1591—2018[S]. 北京:中国标准出版社,2018. [12] 中华人民共和国住房和城乡建设部. 高强钢结构设计标准:JGJ/T 483—2020[S]. 北京:中国标准出版社,2020. [13] 国家标准化管理委员会. 建筑结构用钢板:GB/T 19879—2018[S]. 北京:中国标准出版社,2018. [14] 中国国家标准化管理委员会. 桥梁用结构钢:GB 714—2015[S]. 北京:中国标准出版社,2015. -

计量
- 文章访问数: 20
- HTML全文浏览量: 2
- PDF下载量: 5
- 被引次数: 0