Research on Seismic Performance of a Novel Prefabricated Self-Centering Steel Frame-Support Structural System
-
摘要: 为了研究可恢复功能结构抗震性能和耗能构件简化建模方法,基于传统刚接钢框架提出了一种新型装配式自复位钢支撑结构体系,该体系在传统刚接框架中附加了可更换构件(双屈服点装配式防屈曲支撑、带狗骨削弱盖板的自复位预应力钢框架梁柱节点)。通过有限元软件OpenSEES建立了可更换构件简化计算模型,与既有数据对比验证了简化模型的正确性。基于所提出的抗震性能化设计目标设计了新型装配式体系并通过弹塑性时程分析(NLTHA)研究了新型体系的抗震性能。研究表明:所提出的简化计算模型具有较高的精度,可以应用于体系的弹塑性时程分析中;基于所提出的抗震性能化指标设计的新型装配式体系较传统体系抗震性能优越,新型装配式体系的最大顶层位移和最大层间位移角均小于传统刚接钢框架结构体系与传统刚接钢支撑结构体系,其x、y向的最大顶层位移和最大层间位移角较传统刚接钢框架结构体系分别平均减少28.35%、10.13%和26.86%、10.42%;双屈服点装配式防屈曲支撑能够控制结构层间变形,带狗骨削弱盖板的自复位预应力钢框架梁柱节点的加入能够进一步提高其耗能能力。Abstract: To investigate the seismic performance of self-centering structural systems and the simplified modeling methods for energy-dissipating components, the paper proposed a novel prefabricated self-centering steel frame-support system based on traditional rigid-frame steel structures. This system incorporates replaceable components, including double-yield-point prefabricated buckling-restrained braces and self-centering prestressed steel frame beam-column joints with dog-bone weakened cover plates, into the traditional rigid-frame structure. A simplified calculation model for the replaceable components was developed by using the finite element software OpenSEES, and its accuracy was verified through a comparison with existing data. Based on the proposed seismic performance-based design objectives, the novel system was designed and its seismic performance was studied through elastic-plastic time-history analysis (NLTHA). The study indicated that the proposed simplified calculation model had high accuracy and could be applied to the elastic-plastic time history analysis of the system. The novel prefabricated system, designed based on the proposed seismic performance indicators, exhibited superior seismic performance compared to traditional systems. The maximum top-floor displacement and maximum inter-story drift of the novel prefabricated system were smaller than those of both the traditional rigid-frame steel structure and the traditional rigid-frame steel bracing structure. Specifically, the maximum top-floor displacements and maximum inter-story drifts in the x-and y-directions were, on average, reduced by 28.35%, 10.13%, and 26.86%, 10.42%, respectively, compared to the traditional rigid-frame steel structure. The double-yield-point prefabricated buckling-restrained braces could control the inter-story drift of the structure, while the inclusion of self-centering prestressed steel frame beam-column joints with dog-bone weakened cover plates could further enhance its energy dissipation capacity.
-
[1] 张爱林,张艳霞. 工业化装配式高层钢结构新体系关键问题研究和展望[J]. 北京建筑大学学报,2016, 32(3): 21-28. [2] 姜子钦,杨晓峰,张爱林,等. 带可更换抗侧耗能装置的装配式钢框架结构静力性能研究[J]. 北京工业大学学报,2021, 47(4): 365-373. [3] Bruneau M, Chang S E, Eguchi R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra,2003,19(4):733-752. [4] Oh S H, Kim Y J, Ryu H S. Seismic performance of steel structures with slit dampers[J]. Engineering Structures,2009, 31(9): 1997-2008. [5] 周云,钱洪涛,褚洪民,等. 新型防屈曲耗能支撑设计原理与性能研究[J]. 土木工程学报,2009, 42(4): 64-71. [6] 郭彦林,江磊鑫. 型钢组合装配式防屈曲支撑性能及设计方法研究[J]. 建筑结构,2010, 40(1): 30-37. [7] 潘振华,潘鹏,叶列平,等. 自复位钢框架节点有限元模拟及参数分析[J]. 建筑结构学报,2011, 32(3): 35-42. [8] Rofooei F R, Farhidzadeh A. Investigation on the seismic behavior of steel MRF with shape memory alloy equipped connections[J]. Procedia Engineering,2011, 14: 3325-3330. [9] 周颖,吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报,2011, 32(9): 1-10. [10] Sun J B, Pan P, Wang H S. Development and experimental validation of an assembled steel double-stage yield buckling restrained brace[J]. Journal of Constructional Steel Research,2018, 145: 330-340. [11] 吕西林,武大洋,周颖. 可恢复功能防震结构研究进展[J]. 建筑结构学报,2019, 40(2): 1-15. [12] Jiang Z Q, Chen M L, Yang Z S, et al. Cyclic loading tests of self-centering prestressed prefabricated steel beam-column joint with weakened FCP[J]. Engineering Structures,2022, 252,113578. [13] Zhang A L, Wang H W, Jiang Z Q, et al. Numerical simulation analysis of double yield points assembled buckling-restrained brace with replaceable inner core[J]. Structures,2022, 35: 1278-1294. [14] Hao J P, Wu X H, Tian W F, et al. Experiment and numerical analysis of multi-story coupled steel plate shear wall with weak-axis connections[J]. Journal of Building Engineering,2023, 73,106699. [15] 邱灿星,吴诚静,杜修力. 设置间隙式SMA隔震支座的钢筋混凝土框架结构抗震性能分析[J]. 北京工业大学学报,2022, 48(12): 1226-1237. [16] 张谨,王立军,杨律磊,等. 基于性能的钢结构抗震设计方法探讨及其改进研究[J]. 钢结构(中英文),2023, 38(1): 37-65. [17] 邹俊,邵冰,邢遵胜,等. 一种扁钢管柱-X型支撑钢框架结构的抗震性能研究[J]. 钢结构(中英文),2024,39(6):14-21. [18] 中华人民共和国住房和城乡建设部. 建筑与市政工程抗震通用规范: GB 55002—2021[S]. 北京:中国建筑工业出版社,2021. [19] 许云龙,丁发兴,吕飞,等. 多维地震下钢管混凝土柱-组合梁框架结构体系抗震性能分析[J]. 钢结构(中英文),2023, 38(12): 27-38. [20] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012[S]. 北京:中国建筑工业出版社,2012. [21] 张爱林,刘杰,姜子钦,等. 内嵌双阶段装配式防屈曲支撑的钢框架-支撑结构抗震性能评估[J]. 工业建筑,2023, 53(9): 54-61. [22] Federal Emergency Management Agency. Recommended seismic design criteria for new steel moment-frame buildings:FEMA 350[S]. Washington, DC:FEMA,2000. [23] Federal Emergency Management Agency. Prestandard and commentary for seismic rehabilitation of buildings:FEMA 356[S]. Washington, DC: FEMA,2000. [24] 中华人民共和国住房和城乡建设部. 钢结构设计标准: GB 50017—2017[S]. 北京:中国建筑工业出版社,2018. -

计量
- 文章访问数: 40
- HTML全文浏览量: 3
- PDF下载量: 4
- 被引次数: 0