Field Testing and Research on the Operational Load of the Steel Ash Hopper in a Coal-Fired Power Plant
-
摘要: 通过某燃煤电厂除尘器灰斗存灰、卸灰两阶段现场测试,对灰斗加劲肋应力、斗壁应力、斗壁位移等测试数据及现象进行了分析,并将现场实测结果与有限元模拟结果对比分析,最后结合数值模拟和GB/T 12127—2015《电除尘器钢结构设计规范》计算方法对灰斗在测试荷载工况和满灰荷载工况下的应力进行了分析,探讨了加劲肋的计算方法。研究表明:测试中测点动态最大应力为147 MPa,测试荷载仅为满灰荷载的37%,由数值模拟和按规范计算得出,在满载或超载时灰斗将有安全风险;除尘器稳定运行时,灰斗温度主要受环境影响,温度作用下,结构内会产生不可忽视的温度应力,在工程设计中应给予重视;按照GB/T 12127—2015规定的加劲肋设计方法误差偏大,简化模型不符合实际,建议按照封闭框架计算更为合理。Abstract: Through a two-stage field test involving ash storage and discharge in a coal-fired power plant's ash hopper, the test data and phenomena including stress in the hopper's stiffeners and wall, as well as wall displacement, were analyzed. Field measurements were compared with finite element simulations. Subsequently, the stress state of the ash hopper under both the test load and the full ash load conditions was analyzed using numerical simulations and Design Code of Steel Structures for ESP (JB/T 12127-2015) calculations. The calculation method for the stiffeners was also discussed. The results showed that the maximum dynamic stress at the test point was 147 MPa, and the test load was only 37% of the full ash load. During stable operation of the dust collector, the temperature of the ash hopper was mainly affected by the ambient environment.The thermal stress generated in the structure under temperature effects was non-negligible and should be considered in engineering design. According to the JB/T 12127-2015, the design method for stiffeners exhibited significant errors and did not align with reality. Calculation based on a closed-frame model was demonstrated to be more rational.
-
Key words:
- dust collector ash hopper /
- field test /
- stress analysis /
- stiffeners /
- calculation method
-
[1] 陈耀亮. 灰斗结构采用大挠度理论计算方法研究[J]. 机电技术,2016(3):33-37. [2] 湖南华银株洲发电有限公司“9·22”除尘器垮塌事故调查组. 大唐华银株洲发电有限公司“9·22”除尘器垮塌事故调查报告[R]. 株洲:湖南省株洲市应急管理局,2022. [3] 马钢炼铁总厂脱硫装置“2022·2·6”较大坍塌事故调查组. 马钢炼铁总厂脱硫装置“2022·2·6”较大坍塌事故调查报告[R]. 合肥:安徽省应急管理厅,2022. [4] 上海外高桥发电有限责任公司“2·15”除尘器坍塌较大事故调查组. 上海外高桥发电有限责任公司“2·15”除尘器坍塌较大事故调查报告[R]. 上海:上海市应急局,2022. [5] 薛慧中,张鑫,夏风敏. 钢结构除尘器灰斗受力分析与参数研究[J]. 工业建筑,2023,53(增刊1):269-272. [6] 国家能源局综合司. 关于上海外高桥发电有限责任公司除尘器坍塌事故的通报[R]. 北京:国家能源局,2022. [7] 肖春. 脉冲袋式除尘器本体钢结构设计方法及优化设计研究[D]. 北京:北京交通大学,2008. [8] 鲁浩. 燃煤电厂袋式除尘器的优化仿真设计研究[D]. 保定:华北电力大学,2013. [9] 吴昊,徐榕. 灰斗的强度分析[J]. 机械设计与研究,2012,28(2):93-95. [10] 王永刚. 电除尘器的结构优化设计[D]. 洛阳:河南科技大学,2017. [11] 陈建来,丁晓红,王峰,等. 大型电除尘器灰斗结构分析及优化设计[J]. 矿山机械,2008,36(15):102-105. [12] 张辰茜,赵建昌. 新型梁斗合一电除尘器灰斗试验研究与分析[J]. 机械设计与研究,2018,34(6):188-192. [13] 中华人民共和国工业和信息化部. 电除尘器钢结构设计规范:GB/T 12127—2015[S]. 北京:机械工业出版社,2015. [14] 中华人民共和国住房和城乡建设部. 钢筒仓技术规范:GB 50884—2013[S]. 北京:中国计划出版社,2013. -
点击查看大图
计量
- 文章访问数: 24
- HTML全文浏览量: 8
- PDF下载量: 1
- 被引次数: 0



登录
注册
下载: