Research on Seismic Performance and Rotational Stiffness of Dry Connections Between Prefabricated RC Columns and Steel Beams
-
摘要: 装配式钢与混凝土组合结构是一种具有广阔应用前景的装配式结构类型,而预制混凝土柱-钢梁连接节点中有一类为半刚性连接节点,半刚性连接节点的转动刚度和抗震性能与连接节点的构造有密切关系。为研究预制混凝土柱-钢梁干式连接节点的抗震性能和转动刚度,设计了1个预制混凝土柱-钢梁半刚性连接节点足尺构件开展拟静力加载试验,分析了该梁柱连接节点中钢节点模块、节点核心区箍筋、预制柱纵筋等的屈服特点,以及连接节点的承载力、滞回性能和破坏机理等抗震性能指标和转动刚度。采用ABAQUS有限元软件对连接节点中的关键组件进行了模拟分析,采用混凝土损伤塑性模型来模拟混凝土破坏过程,混凝土的单轴压缩和拉伸本构模型采用GB/T 50010—2010《混凝土结构设计标准》中提供的模型,钢筋本构采用清华大学开发的ABAQUS用户自定义材料子程序集PQ-Fiber中钢筋的单轴弹塑性滞回本构模型(USteel02)。关键组件包括钢节点模块侧板厚度、拉杆直径、牛腿加劲肋厚度、牛腿竖端板厚度、牛腿水平连接板厚度、连接高强螺栓直径。
研究表明:连接节点破坏形态为梁铰机制破坏,楼板混凝土压溃,钢节点模块侧板及内部拉杆屈服;钢节点模块的存在保证了梁柱节点域的刚度和承载力,能够满足抗震设计中"强节点"的要求;连接节点发生明显损伤时的层间位移角大于2%,且承载力仍未下降,在层间位移角大于2.75%时,钢节点模块中侧板受拉外鼓,对应处拉杆屈服,钢牛腿未发现明显损坏,焊缝未断裂;节点试件的滞回曲线呈纺锤形,骨架曲线经历较长的强化区段,且承载力下降缓慢,梁端弯矩-转角曲线表明节点具有半刚性节点特征,且正反向转动刚度不一致,反向转动刚度比正向转动刚度大6倍;对连接节点转动刚度影响较大的组件有钢节点模块侧板厚度、拉杆直径和牛腿竖端板厚度,侧板厚度和拉杆直径对正向转动刚度影响明显,牛腿竖端板和加劲肋能有效提高连接反向转动刚度,但其厚度对正向转动刚度影响不大。-
关键词:
- 装配式钢-混混合结构 /
- 组合梁柱连接节点 /
- 梁柱半刚性连接 /
- 钢节点模块 /
- 转动刚度
Abstract: The prefabricated steel-concrete composite structure is a type of prefabricated structure with broad application prospect, there is a kind of semi-rigid joint among the joints of prefabricated concrete columns and steel beams, and the rotational stiffness and seismic performance of the semi-rigid joint are closely related to the structure of the joint. In order to study the seismic performance and rotational stiffness of the dry connection joint between the precast concrete column and the steel beam, a full-scale component with a semi-rigid connection joint beween the precast concrete column and steel beam was designed and subjected to quasi-static loading tests. The yield characteristics of the steel joint module, the joint core area reinforcing steel, and the longitudinal rebars of the precast column were analyzed in the connection joint, as well as the bearing capacity, hysteretic behavior, and failure mechanism of the connection joint’s seismic performance indicators and rotational stiffness. The key components in the connection joint were simulated by using the ABAQUS finite element software, and the concrete damage plastic model was used to simulate the concrete failure process. The uniaxial compression and tension constitutive models of concrete were adopted from the model provided in the Code for Design of Concrete Structures (GB/T 50010—2010), and the constitutive model of steel rebars was adopted from the ABAQUS user-defined material subroutine package PQ-Fiber developed by Tsinghua University, which used the uniaxial elastic-plastic hysteretic constitutive model of steel rebars (USteel02). The key components include the thickness of the side plates of steel joints module, the diameter of the tie rods, the thickness of the stiffeners on the corbels, the thickness of the vertical plate on the corbels, the thickness of the horizontal plate on the corbels, and the diameter of the high-strength bolts for connection. The research showed that the failure modes of the connection joint were beam hinge mechanism failure, concrete crushing of the slab, and yielding of the steel joint module side plates and internal tie rods. The existence of the steel joint module ensured the stiffness and bearing capacity of the beam-column node zone, which could meet the requirements of "strong joints" in seismic design. The displacement angle between adjacent storeys exceeded 2% when the connection joint showed obvious damage, and the bearing capacity had not yet decreased. When the displacement angle exceeded 2.75%, the steel joint module side plates experienced tensile outward bulging at the corresponding location, and the tie rods yielded, but no obvious damage was found in the steel corbels or the welds. The hysteretic curve of the specimen was in the shape of a spindle, the skeleton curve experienced a long strengthening section, and the bearing capacity decreased slowly. The bending moment-angle curve of the beam ends indicated that the joint had the characteristics of a semi-rigid joint, and the positive and negative rotation stiffnesses were not consistent, with the negative rotation stiffness being six times greater than the positive rotation stiffness. The components that had a significant impact on the rotational stiffness of the connected joints were the thickness of the steel module side plates, the diameter of the tension rods, and the thickness of the vertical plate on the corbels. The thickness of the side plates and the diameter of the tension rods had a significant impact on the positive rotational stiffness, while the thickness of the vertical plate and the stiffeners could effectively improve the negative rotational stiffness, but their thickness had little effect on the positive rotational stiffness. -
[1] 陈幼潘,张超.探索发展我国装配式建筑之路[J].建筑,2021,24:70-71. [2] 芦静夫,樊则森,孙占琦,等.装配式钢-混凝土组合框架结构在学校建筑中的研究与应用[J].施工技术,2020,49(8): 13-18. [3] 中国工程建设标准化协会.高层建筑钢-混凝土混合结构设计规程:CECS 230∶2008[S].北京:中国计划出版社,2008. [4] 高立人.钢梁-混凝土柱组合框架结构在国外的发展[J].建筑结构,2002(5): 34-37. [5] Shiekh T M, Deierlein G G. Beam-column moment monnection for composite frames[J]. Journal of Structural Engineering, 1989,115(11):2858-2875. [6] Iverson J K, Neil H. Performance of precast prestressed concrete building structure during northridge earthquak[J]. PCI Journal, 1994(2): 38-55. [7] Park S K.Experimental test for the seismic performance of PCS structural system[J].Journal of the Korea Concrete Institute,2007,19(3): 313-322. [8] Park S K,Kimm K.Initial stiffness of beam column joints of PCS structural systems[J]. Journal of the Korea Concrete Institute,2008,20(3): 271-282. [9] Khaloo A,Doost R B.Seismic performance of precast RC column to steel beam connections with variable joint configurations[J].Engineering Structures,2018,160(3): 408-418. [10] 杨建江,郝志军.钢梁-钢筋混凝土柱节点在低周反复荷载作用下受力性能的试验研究[J].建筑结构,2001,31(7):35-38,42. [11] 李贤,肖岩,毛炜烽,等.钢筋混凝土柱-钢梁节点的抗震性能研究[J].湖南大学学报(自然科学版),2007,34(2):1-5. [12] 陆铁坚,贺子瑛,余志武,等.钢混凝土组合梁与混凝土柱节点的抗震性能试验研究[J].建筑结构学报,2008,29(1):70-74. [13] 李升才,颜军,王会丽.混凝土柱蜂窝钢梁组合节点拟静力试验研究[J].建筑结构学报,2009,20(2):20-38. [14] 郭子雄,朱奇云,刘阳,等.装配式钢筋混凝土柱-钢梁框架节点抗震性能试验研究[J].建筑结构学报,2012,33(7): 98-105. [15] 刘阳,郭子雄,戴镜洲,等.不同破坏机制的装配式RCS框架节点抗震性能试验研究[J].土木工程学报,2013,46(3): 18-28. [16] 章少华,张锡治,张天鹤,等.预制混凝土管组合柱-钢梁连接节点抗震性能试验研究[J].建筑结构学报,2022,43(7): 143-155. [17] 中华人民共和国建设部.普通混凝土力学性能试验方法标准:GB/T 50081—2002[S].北京:中国建筑工业出版社,2003. [18] 全国钢标准化技术委员会.金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1—2021[S].北京:中国标准出版社,2021. [19] 中华人民共和国住房和城乡建设部.建筑抗震试验规程:JGJ/T 101—2015[S].北京:中国建筑工业出版社,2015. [20] 方自虎,周海俊﹐赖少颖,等.ABAQUS混凝土损伤参数计算方法[J].建筑结构,2014,44(增刊1):719-721. [21] 中华人民共和国住房和城乡建设部.混凝土结构设计标准:GB/T 50010—2010[S].北京:中国建筑工业出版社,2024. [22] 陆新征,叶列平,缪志伟.建筑抗震弹塑性分析[M].北京:中国建筑工业出版社,2009. [23] British Standards Institution. Eurocode 3: design of steel structures part 1-8: design of joints:EN 1993-1-8[S]. London:British Standards Institution,2005. [24] 韩林海. 钢管混凝土结构:理论与实践[M]. 2版. 北京: 科学出版社,2007. -

计量
- 文章访问数: 45
- HTML全文浏览量: 11
- PDF下载量: 3
- 被引次数: 0