Numerical Simulation Study of Temperature Effects of Cable Forces and Module Frames in Cable-Supported Photovoltaic Power Stations
-
摘要: 索支撑光伏电站结构采用悬索代替传统的钢梁结构支撑光伏组件,是索结构的一种新应用,温度效应也是索结构的重要荷载:高温条件下,索发生热膨胀变形导致索力降低,进而影响结构的整体线形和刚度;低温条件下,索发生收缩变形导致索力增大,影响结构承载能力。但是,截至目前,科学家和工程师对于索支撑光伏电站的温度效应还鲜有研究。因此,对索支撑光伏电站索力和组件边框温度效应进行了系统分析和研究,提出了不同工况下两种索支撑光伏电站的索力温度效应经验分析公式和无温度效应索力的经验公式,并通过与有限元计算结果对比,证实了经验公式的准确性。通过经验公式计算结构索力,将节省有限元计算过程,提高索支撑光伏电站支撑结构设计效率。研究发现了在温度效应作用下光伏组件边框应力的分布规律:无索结构情况下,光伏组件边框最不利位置出现在长边框和短边框连接处,边框应力呈现“凹”型分布;有索结构情况下,降温光伏组件边框最不利位置出现在边框与预应力钢绞线连接处,边框应力呈现“M”型分布;升温光伏组件边框最不利位置出现在长边框和短边框连接处,边框应力呈现“W”型分布。Abstract: The cable-supported photovoltaic (PV) power station structure uses suspension cables instead of traditional steel beams to support PV modules, representing a novel application of cable structures. Temperature effects are also a critical load for cable structures: under high temperatures, thermal expansion of the cables causes a reduction in cable force, which affects the overall structural geometry and stiffness; under low temperatures, thermal contraction increases cable force, impacting the structure’s bearing capacity. However, to date, scientists and engineers have conducted limited research on the temperature effects of cable-supported PV power stations. This paper systematically analyzed and studied the cable force and temperature effects on module frames in cable-supported PV power stations. It proposed empirical formulas to analyze the temperature effects on cable force and to determine the cable force without temperature effects, for two types of cable-supported PV power stations under various conditions. The accuracy of these empirical formulas was validated by comparing them with finite element analysis (FEA) results. The use of these formulas to calculate cable force reduced the need for finite element computation, improving the design efficiency of cable-supported PV power station structures. Furthermore, this study revealed the stress distribution patterns of PV module frames under temperature effects. Without cable structures, the most critical stress location on the PV module frame was at the junction of the long and short edges, showing a “concave” stress distribution. With cable structures, under cooling conditions, the critical stress location was at the connection between the frame and the prestressed steel strand, exhibiting an “M”-shaped stress distribution. Under heating conditions, the critical stress location shifted to the junction of the long and short edges, with a “W”-shaped stress distribution.
-
[1] 丁爽,姜玲玲,林翎,等. 我国碳达峰碳中和标准化发展现状及对策研究[J]. 中国标准化,2022(1):63-70. [2] 《今日科技》杂志社. 做好科技支撑“双碳”工作科技部等九部门印发最新实施方案[J]. 今日科技,2022(9):23. [3] 胡云岩,张瑞英,王军. 中国太阳能光伏发电的发展现状及前景[J]. 河北科技大学学报,2014,35(1):69-72. [4] Baumgartner F P,Büchel A,Bartholet R. Solar wings:a new lightweight PV tracking system[J/OL]. Engineering,Environmental Science,2008[ 2008-11-01]. http://doi.org/10.4229/23RDEUPVSEC2008-4DO.9.5. [5] Baumgartner F P,Büchel A,Bartholet R. Experiences with cable-based solar wings tracking system and progress towards two-axis large scale solar systems[C]// Proceedings of the 24th European Photovoltaic Solar Energy Conference. Hamburg:Germany,2009. [6] Baumgartner F P,Carigiet F,Graf U,et al. Urban plant light-weight solar system for parking and other urban double use applications[J/OL]. Engineering,Environmental Science,2013[ 2013-11-22]. http://dx.doi.org/10.21256/ZHAW-4896. [7] Baumgartner F P,Büchel A,Bartholet R. Solar ski lift PV carport and other solar wings cable based solutions[C]//Proc. 27th European Photovoltaic Solar Energy Conf. Frankfart:2015:4343-4347. [8] He X H,Ding H,Jing H Q,et al. Wind-induced vibration and its suppression of photovoltaic modules supported by suspension cables[J]. Journal of Wind Engineering & Industrial Aerodynamics,2020,206,104275. [9] He X H,Ding H,Jing H Q,et al. Mechanical characteristics of a new type of cable-supported photovoltaic module system[J]. Solar Energy,2021,226:408-420. [10] 丁昊,何旭辉,敬海泉,等. 索支撑光伏支架材料和荷载分项系数研究[J/OL]. 工程力学,2025[ 2025-01-11]. http://kns.cnki.net/kcms/detail/11.2595.o3.20240304.1523.028.html. [11] 李寿英,马杰,刘佳琪,等. 柔性光伏系统颤振性能的节段模型试验研究[J/OL]. 土木工程学报,2024[ 2024-03-04]. http://kns.cnki.net/kcms/detail/ 11.2595.o3.20240304.1423.022.html. [12] 敬海泉,彭浩轩,何旭辉. 索支撑光伏电站索力温度效应及其简化分析模型[J/OL]. 工程力学,2024[ 2024-04-09]. https://link.cnki.net/urlid/11.2595.o3.20240304.1423.022.html. [13] 纪寅峰,彭浩轩,邹创. 单层索支撑光伏电站索力温度效应简化计算方法[J/OL]. 中文科技期刊数据库(全文版)工程技术,2025[ 2025-01-11]. https://www.cqvip.com/doc/journal/3469949672. [14] Kodur V,Naser M Z. Fire hazard in transportation infrastructure:Review,assessment,and mitigation strategies[J]. Frontiers of Structural and Civil Engineering,2021,15:46-60. [15] Kotsovinos P,Judge R,Walker G,et al. Fire performance of structural cables:Current understanding,knowledge gaps,and proposed research agenda[J]. Journal of Structural Engineering,2020,146(8),03120002. [16] 杜咏,严芙蓉. 火灾下平行钢丝束温度膨胀及高温蠕变试验研究[J]. 工程力学,2021,38(8):66-74. [17] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009—2012[S]. 北京:中国建筑工业出版社,2012. [18] 中华人民共和国住房和城乡建设部. 索结构技术规程:JGJ 257—2012[S]. 北京:中国建筑工业出版社,2012. [19] 陈太聪,马海涛,苏成. 拉索静力状态的高精度无迭代求解方法研究[J]. 工程力学,2013,30(3):244-250. -
点击查看大图
计量
- 文章访问数: 803
- HTML全文浏览量: 274
- PDF下载量: 1
- 被引次数: 0



登录
注册
下载: