留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模块化钢框架模块间内套筒连接节点抗震性能及受力机理分析

许晓潇 王燕 安琦

许晓潇, 王燕, 安琦. 模块化钢框架模块间内套筒连接节点抗震性能及受力机理分析[J]. 钢结构(中英文), 2024, 39(12): 49-60. doi: 10.13206/j.gjgS23112803
引用本文: 许晓潇, 王燕, 安琦. 模块化钢框架模块间内套筒连接节点抗震性能及受力机理分析[J]. 钢结构(中英文), 2024, 39(12): 49-60. doi: 10.13206/j.gjgS23112803
Xiaoxiao Xu, Yan Wang, Qi An. Seismic Performance and Stress Mechanism Analysis of Inner Sleeve Splicing Joints of Modular Steel Construction[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(12): 49-60. doi: 10.13206/j.gjgS23112803
Citation: Xiaoxiao Xu, Yan Wang, Qi An. Seismic Performance and Stress Mechanism Analysis of Inner Sleeve Splicing Joints of Modular Steel Construction[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(12): 49-60. doi: 10.13206/j.gjgS23112803

模块化钢框架模块间内套筒连接节点抗震性能及受力机理分析

doi: 10.13206/j.gjgS23112803
基金项目: 

国家自然科学基金项目(52208175

52078258)。

详细信息
    作者简介:

    许晓潇,硕士研究生,主要从事模块化装配式钢结构方面研究。

    通讯作者:

    王燕,博士,教授,yanwang2010803@ 163.com。

Seismic Performance and Stress Mechanism Analysis of Inner Sleeve Splicing Joints of Modular Steel Construction

  • 摘要: 为研究模块化钢框架模块间内套筒连接节点的抗震性能和受力机理,基于内套筒连接节点抗震性能试验研究,建立了与试验节点试件相同尺寸和荷载工况的有限元分析模型,并验证了有限元模型的有效性。通过改变节点构造参数,研究了内套筒长度、内套筒高度以及柱内隔板对节点抗震性能影响;推导了考虑轴向压力作用下内套筒与柱壁之间的接触力计算公式,并与有限元计算结果对比验证,验证了接触力理论计算公式的有效性。研究结果表明:建立的有限元模型能够有效模拟内套筒连接节点的工作状态和极限承载力;内套筒连接节点具有较好的抗震性能,且通过合理构造可改善节点受力状态,促使梁端塑性铰外移实现节点的延性破坏;增加内套筒厚度和内套筒长度对节点承载能力影响不明显;设置内隔板可显著提升节点承载能力及耗能能力;钢管柱弯曲变形与内套筒产生的接触力使柱截面在原有荷载状态下的应力有所增大并产生局部应力集中现象,设计中应考虑其不利影响。
  • [1] Sriskanthan S M. Hashemi J, Rajeev P, et al. Review of performance requirements for inter-module connections in multi-story modular buildings[J]. Journal of Building Engineering, 2020,28,101087.
    [2] 王永瑞.模块化建筑新型柱内置螺栓节点力学性能研究[D]. 徐州:中国矿业大学,2020:19-32.
    [3] 夏军武,张帅,王永瑞,等.新型模块化钢结构柱内置螺栓节点力学性能影响因素研究[J].中国矿业大学学报,2023,52(5):918-930.
    [4] Chen Z H, Li H B, Chen A, et al. Research on pretensioned modular frame test and simulations[J]. Engineering Structures, 2017,151:774-787.
    [5] Sanches R, Mercan O, Roberts B. Experimental investigations of vertical post-tensioned connection for modular steel structures[J]. Engineering Structures, 2018, 175: 776-789.
    [6] Dai Z Q,Pang S D,Liew J Y R.Axial load resistance ofgrouted sleeve connection for modular construction[J].Thin-Walled Structures,2020,154,106883.
    [7] Sriskanthan S M. Hashemi J, Rajeev P, et al. Numerical study on performance assessment of an innovative boltless connection for modular building construction[J]. Thin-Walled Structures,2023,185,110622.
    [8] 王燕,刘明扬,杨怡亭,等.模块化钢框架连接装置: 201621323172. 3[P]. 2017-06-09.
    [9] 张忠豪.模块化钢框架模块间内套筒连接节点抗震性能试验研究[D].青岛.青岛理工大学,2023.
    [10] 刘明扬,王燕,郏书朔.新型模块化钢框架板式内套筒连接节点力学性能研究[J].钢结构,2018,33(1): 1-5

    ,10.
    [11] 中国建筑科学研究院.建筑抗震试验规程:JGJ/T 101—2015[S]. 北京:中国建筑工业出版社, 2015.
    [12] Federal Emergency Management Agency(FEMA). Recommended seismic design criteria for new steel moment-frame buildings: FEMA 350[S]. Washington, D.C: FEMA, 2009.
    [13] 中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017—2017[S]. 北京: 中国建筑工业出版社, 2018.
    [14] 陈学森,施刚,王喆,等.箱形柱-工形梁端板连接节点试验研究[J].建筑结构学报,2017,38(8): 113-123.
    [15] 王浩,赵欣,马国伟. 板式模块化钢结构节点抗震性能试验研究[J].东北大学学报(自然科学版),2022,43(10):1484-1491.
    [16] 冯鹏,强翰霖,叶列平.材料、构件、结构的"屈服点"定义与讨论[J].工程力学,2017,34(3): 36-46.
    [17] 曹轲,翟思源,李国强,等.柱承重模块化钢框架抗侧刚度足尺试验与理论计算方法研究[J]. 建筑结构学报,2021,42(增刊1):55-61.
    [18] 武文爽,王燕.装配式模块化钢框架模块间内套筒连接节点力学性能研究[J].钢结构(中英文),2023,38(3):1-12.
  • 加载中
计量
  • 文章访问数:  46
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28
  • 网络出版日期:  2025-01-25

目录

    /

    返回文章
    返回