Finite Element Analysis on the Concrete-Filled Square Steel Tubular Pure Bending Members Encased with CFRP Profile Under Cyclic Loading
-
摘要: 碳纤维增强复合材料(CFRP)具有强度高、耐腐蚀性好等特点,将工字形CFRP型材内置于钢管混凝土结构中形成新型组合构件,不仅可以提高构件的力学性能,还可以减少材料用量、降低结构自重、减小构件截面尺寸,更适用于超高层、大跨度、重载荷等建筑结构。钢管混凝土柱作为建筑结构中的主要抗侧力构件,在经受地震作用时往往决定着整体结构的抗震性能,直接关系到人们的生命及财产安全。目前国内外相关设计规范及标准均不适用于新型组合构件的抗震设计,因此,亟需对其抗震性能展开深入研究。
采用有限元分析软件ABAQUS对往复荷载作用下内置CFRP型材方钢管混凝土纯弯构件进行滞回性能研究。首先,基于现有文献对建模过程进行验证,确认所建模型的准确性和适用性,进而建立大量精细化的内置工字形CFRP型材方钢管混凝土纯弯构件的数值分析模型;然后在此基础上,以典型构件为例,进行受力全过程分析及各部件在特征点处的应力分析;最后,研究不同混凝土抗压强度、钢材屈服强度和含钢率等因素作用下,内置CFRP型材对方钢管混凝土纯弯构件的抗弯承载力和耗能能力的影响。
结果表明:内置CFRP型材方钢管混凝土纯弯构件的荷载-位移骨架曲线可定义为三个阶段:弹性阶段、弹塑性阶段和下降阶段。通过对典型构件进行受力全过程分析可知,构件处于弹性阶段与弹塑性阶段时,相比于核心混凝土和工字形CFRP型材,钢管主要承担荷载作用;在下降阶段时,CFRP型材承担荷载比例有所提高,说明内置CFRP型材可有效提高构件在加载后期的承载力及延性,故与普通钢管混凝土构件相比,CFRP型材较好的抗拉性能使得新型组合构件的抗弯性能得到明显的改善。基于大量参数分析结果可知:含钢率对内置CFRP型材方钢管混凝土柱的承载力及耗能能力均有显著影响,当钢管壁厚由4~7 mm每增加1 mm时,其抗弯承载力分别提高13.83%、8.99%、9.10%,由此可见,钢管壁厚为5 mm时最为经济,累积耗能平均提高约16.57%;钢管作为受力全过程中主要承担纯弯荷载的部件,其强度的改变对构件滞回性能的影响也较大,当钢材强度由Q235提高至Q420时,构件的抗弯承载力提高约30.13%、累积耗能提高约12.45%,并且抗弯承载力随强度的提高呈线性增长;核心混凝土的抗压强度对构件承载力及耗能能力影响均较小,随着混凝土强度的提高,其抗弯承载力提高的幅度逐渐减小,当由C30提高至C60时,其累积耗能仅提高约3.44%。因此,内置CFRP型材的方钢管混凝土构件相比于普通钢管混凝土构件具有更好的抗震性能,且建议通过改变钢材屈服强度和含钢率的方式来提高新型组合构件的承载能力,这是最为经济的。Abstract: Carbon fiber reinforced polymer (CFRP) has the characteristics of high-strength and good corrosion resistance. Encased I-shaped CFRP profile into concrete-filled square steel tubular structure (CFRP-CFSST) forming a new-typed composite member can not only improve the mechanical properties of the member, but also reduce the material consumption, the dead weight of the structure and the cross-sectional size of the member. It is more suitable for super high-rise, large-span and heavy-load structures. As a critical lateral force-resisting member in structures, CFST often determines the seismic performance of the whole structure when subjected to an earthquake, which is directly related to the safety of people's lives and property. At present, the relevant design codes and standards around the world are not suitable for the seismic design of new composite members, so it is necessary to carry out in-depth research on its seismic performance.
In this paper, finite element analysis software, ABAQUS, was used to study the seismic performance of the flexural behavior of CFRP-CFSST pure bending members. Firstly, considering the accuracy and applicability, the finite element model was verified with the existing literature, and a large number of refined models of CFRP-CFSST pure bending members were established based on the verified model. Then, on this basis, the whole process of stress analysis and stress analysis of each component at characteristic points were carried out based on the typical member. Finally, the effects of concrete compressive strength, steel yield strength and steel ratio on the flexural capacity and energy dissipation capacity of CFRP-CFSST pure bending members were studied.
The simulation results indicated that the load-displacement envelope curves of the CFRP-CFSST pure bending member can be defined as three stages: elastic stage, elastoplastic stage and descending stage. Through the whole process analysis of typical members, in the elastic stage and elastoplastic stage, the load is mainly borne by the steel tube compared to the core concrete and I-shaped CFRP profiles. In the descending section, the load-bearing ratio of the CFRP profile increases, which shows that the encased CFRP profile can effectively improve the bearing capacity and ductility of members in the later loading stage. Therefore, compared with ordinary CFST members, the better tensile performance of CFRP profile efficiently improves the flexural performance of new composite members. Based on the parametric analysis results, the steel ratio has a significant effect on the bearing capacity and energy dissipation capacity of CFRP-CFSST members. When the steel tube thickness increases from 4 mm to 7 mm with an increment of 1 mm, the flexural bearing capacity of CFRP-CFSST members increases by 13. 83%, 8. 99% and 9. 10% respectively, which shows that a 5 mm steel tube thickness is most economic and the cumulative energy dissipation capacities increased by about 16. 57% on average. The steel tube is the main component that bears pure flexural load in the whole loading process, and the change in its strength also has a great influence on the hysteretic behavior of the members. When the steel strength increases from Q235 to Q420, the flexural bearing capacity of the members rises by about 30. 13%, the cumulative energy dissipation increases by about 12. 45%, and the flexural bearing capacity increases linearly with the increasing strength. The compressive strength of core concrete has a minor influence on the bearing capacity and energy dissipation capacity of members, and with the increase of concrete strength, the increase of flexural bearing capacity gradually decreases. When it is increased from C30 to C60, its cumulative energy dissipation capacities only increase by about 3. 44% . Therefore, compared with ordinary CFST members, CFRP-CFSST members have a better seismic performance, and most economic measures recommended are to improve the bearing capacity of new composite members by increasing the steel yield strength or steel ratio. -
[1] 韩林海.钢管混凝土结构:理论与实践[M]. 3版.北京:科学出版社,2016. [2] 丁发兴,许云龙,王莉萍,等.钢-混凝土组合结构抗震性能研究进展[J].钢结构(中英文),2023,38(12):1-26. [3] 钟善桐,张文福,屠永清,等.钢管混凝土结构抗震性能的研究[J].建筑钢结构进展,2002(2):3-15. [4] Yang S L, Zhang L, Zhang J W, et al. Seismic behavior of concrete-filled wide rectangular steel tubular (CFWRST) stub columns[J/OL]. Journal of Constructional Steel Research, 2022, 196[2022-07-07]. https://doi.org/10.1016/j.jcsr.2022.107402. [5] 金浏,梁健,李冬,等.结构尺寸对方钢管混凝土短柱抗震性能影响的试验研究[J].工程力学, 2023, 40(4):35-45. [6] 徐超,李家富,丁发兴,等.增强约束钢管混凝土框架-核心筒结构抗震性能[J].钢结构(中英文),2023,38(12):39-47. [7] Han L H, Huang H, Tao Z, et al. Concrete-filled double skin steel tubular (CFDST) beam-columns subjected to cyclic bending[J]. Engineering Structures, 2006, 28(12):1698-1714. [8] Huang H, Han L H, Tao Z, et al. Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns[J]. Journal of Constructional Steel Research, 2010, 66(4):542-555. [9] 黄宏,朱琪,陈梦成,等.方中空夹层钢管混凝土压弯扭构件试验研究[J].土木工程学报. 2016, 49(3):91-97. [10] 史艳莉,纪孙航,王文达,等.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究[J].土木工程学报, 2022, 55(1):75-88. [11] 朱美春,刘建新,王清湘.钢骨-方钢管高强混凝土柱抗震性能试验研究[J].土木工程学报, 2011, 44(7):55-63. [12] 李云云,闻洋,杨德山.钢骨-钢管混凝土柱抗震性能的影响因素[J].沈阳建筑大学学报(自然科学版), 2016, 32(4):628-634. [13] 杨德山.钢骨-钢管混凝土柱抗震性能试验研究[J].钢结构, 2015, 30(11):10-13. [14] Zeng J J, Liang S D, Yan Z G, et al. Seismic behavior of FRPconcrete-steel double skin tubular columns with a rib-stiffened Q690 steel tube and high-strength concrete[J/OL]. Thin-Walled Structures. 2022, 175[2023-03-26]. https://doi.org/10.1016/j.tws.2022.109127. [15] 刘明学,钱稼茹. FRP-混凝土-钢双壁空心管柱抗震性能试验[J].土木工程学报, 2008, 41(3):29-36. [16] Xiao Y, He W H, Choi K. Confined concrete-filled tubular columns[J]. Journal of Structural Engineering, 2005, 131(3):488-497. [17] Wang Q L, Yu L F, Peng K, et al. Hysteretic behavior of specimens of circular concrete-filled CFRP-steel tubular beam-column[J]. Advances in Civil Engineering,2021, 2021:1-19. [18] 王志滨,谢恩普,陈靖. CFRP-方钢管混凝土压弯构件的滞回性能[J].长安大学学报(自然科学版), 2014, 34(6):91-99. [19] 李帼昌,朱振华,孙行,等.内置工字形CFRP型材的方钢管混凝土轴压长柱受力性能研究[J].建筑结构学报,2017,38(增刊1):226-232. [20] 冯兴,李帼昌,杨志坚,等.内置工字形CFRP型材的方钢管混凝土中长柱双向偏压性能研究[J].建筑钢结构进展,2021, 23(8):32-42. [21] 刘典奇.内置工字形CFRP型材方钢管混凝土纯弯构件力学性能研究[D].沈阳:沈阳建筑大学, 2019. [22] 李威.圆钢管混凝土柱-钢梁外环板式框架节点抗震性能研究[D].北京:清华大学, 2011. [23] 刘威.钢管混凝土局部受压时的工作机理研究[D].福州:福州大学, 2005. [24] Tsai S W, Wu E M. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1):58-80. [25] Li G C, Qiu Z M, Yang Z J, et al. Seismic performance of high strength concrete filled high strength square steel tubes under cyclic pure bending[J]. Advanced Steel Construction, 2020, 16(2):112-123. [26] Du G F, Zhang J, Li Y, et al. Experimental study on hysteretic model for L-shaped concrete-filled steel tubular column subjected to cyclic loading[J/OL]. Thin-Walled Structures, 2019, 144[2019-07-08]. https://doi.org/10.1016/j.tws.2019.106278. [27] Yan L S, Wei X, Wen D W, et al. Mechanical behaviour of circular steel-reinforced concrete-filled steel tubular members under pure bending loads[J]. Structures, 2020, 25:670-682. [28] 袁辉辉,吴庆雄,陈宝春,等.平缀管式等截面钢管混凝土格构柱抗震性能试验与有限元分析[J].工程力学, 2016, 33(10):226-235.
点击查看大图
计量
- 文章访问数: 14
- HTML全文浏览量: 3
- PDF下载量: 3
- 被引次数: 0