Finite Element Analysis of Seismic Performance of Concrete-Filled Square Steel Tubular Column to Composite Beam Joint with Stiffening Ring Under High Axial Pressure
-
摘要: 钢管混凝土柱-组合梁加强环节点因性能优异被超高层建筑广泛采用,针对高轴压比方钢管混凝土柱-组合梁加强环节点的抗震性能,开展了有限元研究。在混凝土三轴塑性损伤和钢材混合强化模型基础上,进一步引入钢材的韧性损伤模型,建立了基于试验构件的实体精细有限元模型,通过和试验结果对比,证明了有限元模型能够准确模拟节点的抗震性能和破坏模式,并能较准确模拟加载后期承载力下降段,极限承载力误差均在8%以内;开展了有限元参数分析,考虑了增加钢梁高度“强梁”构造和采用柱端拉筋“强柱”构造,分析了不同参数对节点滞回曲线、骨架曲线、破坏模式和塑性耗能分配与失效机制的影响。分析结果表明:高轴压比下,增加钢梁高度和采用柱端拉筋大幅度提升了节点抗弯承载力和耗能能力,使得组合节点在高轴压比时仍维持梁端失效破坏模式;加强环节点在梁-柱抗弯承载力比介于1.39~2.11时,发生梁耗能向柱耗能的转变; GB 50011—2010《建筑抗震设计规范》中规定梁柱抗弯承载力比取值小于1时为“强柱弱梁”,对于加强环节点该规定较为保守,建议加强环节点的梁柱抗弯承载力比可放大至小于1.3时为“强柱弱梁”。Abstract: Concrete-filled steel tubular column to composite beam joint with stiffening ring is widely used in super high-rise buildings due to its excellent performance. This paper conducted finite element research on the seismic performance of concrete-filled square steel tubular column to composite beam joint with stiffening ring under high axial pressure. On the basis of the triaxial plastic damage model of concrete and the mixed strengthening model of steel, a ductile damage model of steel was further applied, and solid fine finite element models based on test specimens were established. By comparing with experimental results, it is proven that the finite element model can accurately simulate the seismic performance and failure modes of joints, as well as the decline of ultimate capacity in the later stage of loading, with ultimate capacity errors within 8%. Finite element parametric analysis was conducted, considering the construction of “strong beams” with increased steel beam height and “strong columns” with column stirrup. The effects of different parameters on hysteresis curves, skeleton curves, failure modes, and plastic energy distribution and failure mechanisms of joints were analyzed. The analysis results indicate that under high axial compression ratio, after increasing the steel beam height and using the construction of stirrup at the column end, the bending capacity and energy dissipation capacity of the joints are significantly improved, and the composite joints still maintain the beam end failure mode at high axial compression ratio. When the ratio of bending capacity of beam to column is between 1.39 and 2.11, the joint with stiffening ring takes a transition from beam energy consumption to column energy consumption; According to the Code for Seismic Design of Buildings (GB 50011—2010), it is considered as a strong -column weak-beam when the value of the ratio of bending capacity of beam to column is less than 1. This is relatively conservative for the definition of strong-column weak-beam for joints with stiffening ring. It is recommended that the ratio of bending capacity of beam to column for joints with stiffening ring corresponding to strong-column weak-beam can be enlarged to less than 1.3.
-
[1] 丁发兴, 许云龙, 王莉萍, 等. 钢-混凝土组合结构抗震性能研究进展[J]. 钢结构(中英文), 2023, 38(12):1-26. [2] 韩林海. 钢管混凝土结构:理论与实践[M]. 3版. 北京:科学出版社, 2019:268-272. [3] 王静峰, 王海涛, 王冬花, 等. 钢管混凝土柱-钢梁单边高强螺栓端板连接框架的拟静力试验研究[J]. 土木工程学报, 2017, 50(4):13-20, 31. [4] Zhang D, Gao S, Gong J. Seismic behaviour of steel beam to circular CFST column assemblies with external diaphragms[J]. Journal of Constructional Steel Research, 2012, 76:155-166. [5] Cao S, Shu G, Lin K, et al. Experimental seismic behavior of bottomthrough-diaphragm and top-ring connection to SST columns[J]. Journal of Constructional Steel Research, 2018, 150:249-260. [6] Li W, Han L H, Ren Q X. Inclined concrete-filled SHS steel column to steel beam joints under monotonic and cyclic loading:experiments[J]. Thin-Walled Structures, 2013, 62:118-130. [7] Chen J, Wang Z, Yuan J. Research on the stiffness of concrete filled tubular column and steel beam joint with stiffening ring[J]. Journal of Constructional Steel Research, 2004, 25:43-54. [8] Wang W, Li H, Wang J. Progressive collapse analysis of concretefilled steel tubular column to steel beam connections using multiscale model[J]. Structures, 2017, 9:123-133. [9] Sui W, Wang Z, Li X. Experimental performance of irregular PZs in CHS column H-shape beam steel frame[J]. Journal of Constructional Steel Research, 2019, 158:547-559. [10] 王静峰, 韩林海, 江莹. 方钢管混凝土柱-钢梁外加强环节点的非线性有限元分析[J]. 沈阳建筑大学学报(自然科学版), 2007, 106(2):177-181. [11] Li R, Samali B, Tao Z, et al. Cyclic behaviour of composite joints with reduced beam sections[J]. Engineering Structures, 2017, 136:329-344. [12] Ding F, Yin G, Jiang L, et al. Composite frame of circular CFST column to steel-concrete composite beam[J]. Thin-Walled Structures, 2018, 122:137-146. [13] 孙浩, 徐庆元, 丁发兴, 等. 循环荷载下钢管混凝土墩柱塑性大变形分析[J]. 铁道科学与工程学报, 2023, 20(3):973-985. [14] Xu Q Y, Sun H, Ding F X, et al. Analysis of ultimate seismic performance of thin-walled concrete-filled steel tube bridge piers under dynamic load[J/OL]. Engineering Structures, 2023, 292[2023-10-01]. https://doi.org/10.1016/j.engstruct.2023.116544. [15] 李彪, 吕飞, 孙浩, 等. 相同造价下几类方形截面桥墩抗震性能对比研究[J]. 钢结构(中英文), 2024, 39(1):53-67. [16] 张玉芬, 周金富, 朱戈, 等. 高轴压比下复式钢管混凝土柱-钢梁连接节点抗震性能试验[J]. 建筑科学与工程学报, 2018, 35(6):57-65. [17] 丁发兴, 刘怡岑, 吕飞, 等. 拉筋接触方式对高轴压比大尺寸钢管混凝土柱滞回性能影响试验研究[J]. 建筑结构学报, 2021, 42(9):62-72. [18] Sun H, Ding F X, Wang L P, et al. Experimental and analytical study of thin-walled stirrup-confined CFST piers under pseudo-static loading[J/OL]. Journal of Constructional Steel Research, 2023, 210[2023-08-01]. https://doi.org/10.1016/j.jcsr.2023.108047. [19] Ding F X, Liu Y, Lyu F, et al. Cyclic loading tests of stirrup cage confined concrete-filled steel tube columns under high axial pressure[J]. Engineering Structures, 2020, 221:1-18. [20] 廖常斌, 丁发兴, 刘怡岑, 等. 高轴压比拉筋圆钢管混凝土柱界面滑移行为与抗震性能研究[J]. 钢结构(中英文), 2024, 39(1):41-52. [21] 丁发兴, 卫心怡, 潘志成, 等. 高轴压比方形钢管混凝土柱-组合梁单边栓连刚接节点抗震性能试验研究[J]. 建筑结构学报, 2023, 44(7):105-115. [22] 中华人民共和国住房和城乡建设部. 钢管混凝土结构技术规范:GB 50936-2014[S]. 北京:中国建筑工业出版社, 2014. [23] 中华人民共和国建设部. 建筑抗震试验方法规程:JGJ 101-96[S]. 北京:中国建筑工业出版社, 1996. [24] 丁发兴. 钢管混凝土轴压约束原理[M]. 北京:科学出版社, 2023. [25] 丁发兴, 吴霞, 向平, 等. 多类混凝土和各向同性岩石损伤比强度准则[J]. 土木工程学报, 2021, 54(2):50-64, 73. [26] Ding F X, Wu X, Xiang P, et al. New damage ratio strength criterion for concrete and lightweight aggregate concrete[J/OL]. ACI Structural Journal, 2021, 118(6)[2021-11-01]. https://doi.org/10.14359/51732989. [27] 谷利雄, 丁发兴, 张鹏, 等. 钢-混凝土组合简支梁滞回性能非线性有限元分析[J]. 工程力学, 2013, 30(1):301-306. [28] Luo L, Ding F X, Wang L, et al. Plastic hinge and seismic structural measures of terminal stirrup-confined rectangular CFT columns under low-cyclic load[J/OL]. Journal of Building Engineering, 2020, 34(4)[2021-01-06]. https://doi.org/10.1016/j.jobe.2020.101908. [29] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011- 2010 S]. 北京:中国建筑工业出版社, 2016.
点击查看大图
计量
- 文章访问数: 109
- HTML全文浏览量: 22
- PDF下载量: 14
- 被引次数: 0