Experimental Study on Lateral Performance of Partially Encased Composite Shear Walls
-
摘要: 随着装配式结构在我国的应用与推广,PEC构件由于其便于批量化生产、快速装配的特点,在工程中的应用价值得以大大提高。部分企业开始尝试在实际工程中应用PEC构件,提出了一种新型剪力墙构件——PEC剪力墙。以实际工程应用为出发点对3个足尺PEC剪力墙试件进行低周拟静力水平加载试验,观察了PEC剪力墙的试验现象、破坏过程,通过分析关键部位应力、应变情况,考察了在往复荷载作用下的破坏模式、变形特征;分析了PEC剪力墙在低周往复荷载作用下的滞回曲线、骨架曲线、耗能能力、延性、承载力以及刚度等力学性能,对其抗侧性能进行了评价;对比了卷边构造措施对其破坏特征、变形以及抗侧性能的影响,并检验其有效性;对比分析了不同轴压比对卷边构造PEC剪力墙抗侧性能的影响。试验结果表明:1)PEC剪力墙试件均为弯曲屈服后破坏,在达到最大承载力前钢翼缘均已经屈服;试件SW1底部混凝土压溃破坏,外侧钢翼缘出现局部屈曲,试件SW2与SW3底部钢翼缘未发生屈曲,最终发生底座锚固破坏。2)试件SW1的滞回曲线比较饱满,有较强的塑性耗能能力,试件SW2和试件SW3滞回曲线有一定程度的捏缩现象,试件的延性系数均大于3.4,有较好的变形能力,承载力退化程度很低,刚度后期退化变缓,在1/30层间位移角内具有稳定良好的承载能力。3)卷边构造的设置加强了对PEC剪力墙底部混凝土的约束,延后了底部混凝土的压溃破坏,使PEC剪力墙具有更好的承载性能。4)高轴压比下,试件会较早出现受压屈服,PEC剪力墙的初始刚度会有一定的提高,但其延性与耗能能力会下降。5)相比于混凝土剪力墙,PEC剪力墙的变形能力更接近钢板剪力墙,PEC剪力墙抗震设计的控制变形限值可适当放宽。Abstract: With the application and promotion of prefabricated structures in China, the application value of PEC members in engineering has been greatly improved due to its characteristics of convenient mass production and rapid assembly. Some companies begin to try to apply PEC members in actual projects, and proposed a novel shear wall-PEC shear wall. Three full-scale PEC shear wall specimens were designed based on engineering application, and tested under low-cycle pseudo-static horizontal loading.The test phenomenon and failure process of PEC shear wall were observed, and the failure mode and deformation characteristics under the reciprocating load were studied by analyzing the stress and strain conditions of key parts. The hysteretic curve, skeleton curve, energy dissipation capacity, ductility, bearing capacity, stiffness and other mechanical properties of PEC shear wall under the low cyclic loading were analyzed to evaluate its lateral resistance properties. The influence of the flange crimping construction on the failure characteristics, deformation and lateral resistance were compared to verify its validity. And the influence of the axial compression ratio on the lateral performance of PEC walls with crimping construction was analyzed. The test results show that: 1)all PEC shear wall specimens failed after yielding due to bending, and the steel flange yielded before reaching the maximum bearing capacity. The concrete collapse at the bottom of specimen SW1 caused local buckling of the steel flange, while the bottom steel flange of specimen SW2 and SW3 did not buckled, and finally the base anchoring failure occurred. 2)Specimen SW1 hysteresis curve of SW1 is full, which has strong ability of plastic energy dissipation; hysteresis curves of specimen SW2 and specimen SW3 have a certain degree of pinch phenomenon. The ductility indexes are greater than 3.4, which has good deformation ability. The deterioration of wall resistance is much limited, and stiffness degrades is at a slower rate during later loading stages. All of the specimens keep stable bearing capacity within 1/30 inter-story drift.3) The crimping construction efficiently confines the concrete at the bottom corner of the PEC shear wall, postpones the collapse of the concrete, and makes the PEC shear walls have better bearing capacity. 4)Under high axial compression ratio, the specimen will compressively yield earlier, while the initial stiffness of the PEC shear wall will increase somewhat, meanwhile, its ductility and energy dissipation capacity will be reduced. 5) The deformation capacity of PEC shear wall is closer to that of steel plate shear wall than that of concrete shear wall. The deformation limit for seismic design of PEC shear wall can be appropriately enlarged.
-
[1] European Committee for Standardization(ECS).Eurocode 4:design of composite steel and concrete structures,part 1-1:general rules and rules for buildings:EN 1994-1-1[S].Brussels:ECS,2004. [2] Canadian Standards Association.Design of steel structures:CSA S16-09[S].Mississauga:Canadian Standards Association,2009. [3] Fattah A B,Fattah B A,Hunaiti Y M.Design considerations of partially encased composite columns[J].Structures & Buildings,1994,104(1):75-82. [4] Brent S,P,Robert G D.Behaviour of partially encased composite columns made with high performance concrete[R].Edmonton:University of Alberta,2006. [5] 杨婧.半组合结构压弯构件的滞回性能研究[D].上海:同济大学,2008. [6] 方有珍,陆佳,马吉,等.薄壁钢板组合PEC 柱(强轴)滞回性能试验研究[J].土木工程学报,2012,45(4):48-55. [7] 方有珍,马吉,陆承铎,等.新型卷边钢板组合截面 PEC 柱(强轴)滞回性能试验研究[J].工程力学,2013,30(3):181-190. [8] 何雅雯.非塑性铰截面钢构件与PEC 压弯构件的力学模型及试验研究[D].上海:同济大学,2017. [9] 刘杰.部分外包钢-混凝土组合柱截面特征参数对其力学性能的影响分析[D].上海:同济大学,2018. [10] 张其林,黄亚男,吴杰,等.装配式部分外包组合短肢剪力墙抗震性能试验研究[J].施工技术,2019,48(2):100-106,125. [11] 周雨楠,黄亚男,徐国军,等.PEC短肢剪力墙轴压比影响及承载力计算方法[J].佳木斯大学学报(自然科学版),2018,36(6):843-848,875. [12] 周雨楠,黄亚男,张其林,等.短肢PEC组合剪力墙的数值模型及公式拟合[J].建筑钢结构进展,2020,22(1):92-100. [13] 中华人民共和国国家质量监督检验检疫总局.金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1—2010[S].北京:中国标准出版社,2010. [14] 中华人民共和国住房和城乡建设部.普通混凝土力学性能试验方法标准:GB/T 50081—2002[S].北京:中国建筑工业出版社,2003. [15] Federal Emergency Management Agency(FEMA).Interin testing protocls for deterining the seismic performance characteristics of structural and nonstructural components[R].Washington D C:FEMA,2007. [16] Park R.Ductility evaluation from laboratory and analytical testing[C]//Proceedings of Ninth World Conference on Earthquake Engineering.Tokyo-Kyoto:1988. [17] 中华人民共和国住房和城乡建设部.建筑抗震试验规程:JGJ 101—2015[S].北京:中国建筑工业出版社,2015. [18] 宁燕琪.考虑竖向荷载作用的带缝钢板剪力墙试验研究与理论分析[D].上海:同济大学 ,2011. [19] 中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB 50011—2010[S].北京:中国建筑工业出版社,2010. [20] 中华人民共和国住房和城乡建设部.钢板剪力墙技术规程:JGJ/T 380—2015[S].北京:中国建筑工业出版社,2015.
点击查看大图
计量
- 文章访问数: 302
- HTML全文浏览量: 55
- PDF下载量: 20
- 被引次数: 0