Research on the Working Mechanism of Internal Steel Wires in a 1×19 Galfan-Coated Cable During Loading
-
摘要: 近年来,随着预应力空间结构的发展,高钒索因其优异的抗腐蚀和防火性能,在工程领域得到了广泛应用。为深入理解拉索在复杂受力条件下的力学性能及其内部钢丝的相互作用机理,建立了1×19高钒索的三维精细化有限元模型,对其在轴向拉伸和拉-弯耦合作用下的力学行为进行了模拟和分析。模型中定义了高钒钢丝的本构关系,考虑了钢丝间的接触,并利用刚体耦合进行边界条件设置,并对比试验数据验证了有限元模型的准确性。通过对有限元模拟结果分析发现:轴向拉伸作用下,摩擦系数对钢丝间接触压力的影响因位置而异,泊松效应和钢丝间的相互错动导致接触压力下降,摩擦系数的影响也随之减弱;钢丝应力发展受捻角影响显著,中心钢丝因无捻角而应力增长最快,外层钢丝因环向握裹作用而增长较慢;在拉-弯耦合作用下,接触压力的变化趋势明显受位置影响,中心钢丝下方区域因受拉力较大而快速增长,中心钢丝上方区域则因受压导致接触压力先减小,随后因横向荷载主导而增大;此外,拉索弯曲时应力分布呈现明显不均匀性,应力集中区域在拉索固定端和横向荷载作用区域尤为显著,拉压交替明显。结果表明:拉索在复杂受力下内部呈现出复杂的应力与接触压力分布规律,在受拉时,钢丝捻角对应力发展起主导作用,而弯曲效应则显著改变了拉索钢丝的接触压力与应力的分布模式。Abstract: In recent years, with the development of prestressed spatial structures, Galfan-coated steel cables have been widely used in engineering applications due to their excellent corrosion resistance and fire performance. To gain an in-depth understanding of the mechanical behavior of cables under complex loading conditions and the interaction mechanisms among internal steel wires, this study establishes a three-dimensional refined finite element model of a 1×19 Galfan-coated steel cable to simulate and analyze its mechanical response under axial tension and tension-bending coupling. The model defines the constitutive relation of the Galfan-coated steel wires, considers the contact between wires, utilizes rigid body coupling for boundary condition setting, and validates the accuracy of the finite element model by comparing it with experimental data. Analysis of the finite element simulation results reveals that: under axial tension, the influence of the friction coefficient on the contact pressure between wires varies with location; the Poisson effect and mutual misalignment between wires lead to a decrease in contact pressure, and the influence of the friction coefficient subsequently diminishes; the stress development in the wires is significantly affected by the lay angle, with the center wire (having no lay angle) exhibiting the fastest stress growth, while the outer layer wires grow slower due to the circumferential grip-wrapping effect; under tension-bending coupling, the variation trend of contact pressure is noticeably influenced by position, with the area below the center wire showing rapid growth due to greater tensile force, while the area above the center wire first decreases in contact pressure due to compression and then increases as the transverse load becomes dominant; furthermore, the stress distribution during cable bending exhibits significant inhomogeneity, with stress concentration areas being particularly prominent at the fixed ends and transverse load application regions, where alternating tension and compression is evident. The results indicate that the internal stress and contact pressure distribution of the cable under complex loading exhibit complex patterns; during tension, the wire lay angle plays a dominant role in stress development, while the bending effect significantly alters the distribution patterns of contact pressure and stress in the cable wires.
-
[1] 薛素铎. 中国空间结构的近期发展与工程实践[J]. 钢结构(中英文),2020,35(7):1-16. [2] 侯佩. 高钒索在预应力钢结构中的施工应用[J]. 科技创新与应用,2018(7):149-150. [3] 陈冲,袁行飞,蒋淑慧,等. 钢绞线静力拉伸模型建立和截面特性分析[J]. 华中科技大学学报(自然科学版),2016,44(12):13-17. [4] 彭崇梅,张启伟,李元兵. 多层半平行钢丝索静力拉伸模型及参数分析[J]. 华南理工大学学报(自然科学版),2013,41(8):115-119. [5] 江培睿,赵勇霖,王荣辉,等. 钢绞线拉索弹性模量修正及其对缆索体系桥梁的影响[J]. 贵州大学学报(自然科学版),2021,38(4):119-124. [6] 孙国军,袁军,吴金志. 新型钢绞线拉索几何抗弯刚度试验研究[J]. 建筑材料学报,2020,23(4):927-933. [7] 孙国军,郑向红,薛素铎,等. 钢拉索拉-弯耦合效应受力性能研究[J]. 天津大学学报(自然科学与工程技术版),2017,50(增刊1):36-41. [8] 马军,葛世荣,张德坤. 钢丝绳股内钢丝的载荷分布[J]. 机械工程学报,2009,45(4):259-264. [9] 任俊超. 轴向力作用下Galfan拉索截面径向位移分析[J]. 建筑结构,2020,50(3):105-108. [10] 贾如钊. 基于多尺度模型的钢绞线索风致疲劳数值仿真研究[D]. 上海:上海交通大学,2020. [11] 权鑫鑫. 平行钢丝束的弯曲性能研究[D]. 天津:天津大学,2019. [12] 余玉洁,陈志华,王霄翔. 拉索半精细化有限元模型及其敏感性分析[J]. 天津大学学报(自然科学与工程技术版),2015,48(5):96-101. [13] 巩同川. 基于精细化模型的钢拉索力学性能研究[D]. 北京:北京工业大学,2016. [14] 中华人民共和国住房和城乡建设部. 索结构技术规程:JGJ 257—2012[S]. 北京:中国建筑工业出版社,2012. -
点击查看大图
计量
- 文章访问数: 22
- HTML全文浏览量: 8
- PDF下载量: 1
- 被引次数: 0



登录
注册
下载: