The Influence of Coupling Action of Coupling Beam on Stability and Deformation of Coupled Steel Plate Shear Wall
-
摘要: 联肢钢板剪力墙是在钢板剪力墙间引入连梁发展而来的新型抗侧力体系,连梁的引入改变了结构的抗倾覆机制,从而影响柱子的稳定与结构的变形。故将连梁截面作为变量,研究连梁与墙肢连接形成的耦联作用对联肢钢板剪力墙稳定与变形的影响。
取一实际工程的足尺6层联肢钢板剪力墙作为原型,通过改变连梁高度与腹板厚度,利用ABAQUS进行单调与往复加载模拟,分析结构的力学性能与变形能力。分析结果表明:连梁产生的耦联作用有减小外柱受压从而减缓结构失稳的作用,随着连梁截面高度的增加,结构抗剪承载力逐渐提升,但提升程度越来越小且承载力稳定性有所降低;侧移达1/50位移角前,结构处于正常使用阶段,1/30位移角后,结构承载力显著下降而面临倒塌;以延性为判别指标时耦联比有最优段,耦联比从0.6到1.2的过程中,结构延性基本表现出迅速上升→平缓上升→缓慢下降→迅速下降的现象,其中平缓上升段对应耦联比的最优段。-
关键词:
- 联肢钢板剪力墙 /
- ABAQUS数值模拟 /
- 抗震性能 /
- 耦联比
Abstract: Coupled steel plate shear wall is a new type of lateral resisting system by linking coupling beam between steel plate shear walls. The introduction of coupling beam changes the anti-overturning mechanism, thus affecting the column's stability and structural deformation. Therefore, the cross-section of the coupling beam was used as a variable to study the influence of the coupling action derived from coupling beam on the stability and deformation of the coupling steel plate shear wall.
A full-scale 6-story steel plate shear wall was taken as the prototype, changing the coupling beam section, then Abaqus was used to simulate the monotonic and cycle loading. The results show that, the coupling effect of coupling beam can reduce the compression of the outer column then lighten the structural instability. With the increase of section height of coupling beam, the structural shear capacity is gradually increased, but the increasing trend is smaller and the instability of the shear capacity is increased gradually. Before the drift ratio reaches 1/50, the structure is in normal use stage, while the shear capacity decreases significantly and the structure is in the risk of collapse after exceeding the drift ratio of 1/30. When ductility is used as criterion, the coupling ratio has an optimal interval, as it rises from 0. 6 to 1. 2, the structural ductility basically shows the phenomenon of rapid rise→ gentle rise→ slow decline→rapid decline. The coupling ratio of the gentle rise stage can attain the optimal interval. -
Thorburn L J, Kulak G L, Montgomery C J. Analysis of steel plate shear walls:structural engineering:Rep. No. 107[R]. Canada:1983. Timler P A, Kulak G L. Experimental study of steel plate shear walls:structural engineering:Rep. No. 114[R]. Canada:1983. Timler P A. Design procedures development, analytical verification, and cost evaluation of steel plate shear wall structures:Rep. No. 98-01[R]. Canada:1998. Elgaaly M. Thin steel plate shear walls behavior and analysis[J]. Thin-Walled Structures, 1998,32(1/2/3):151-180. Berman J W, Bruneau M. Experimental investigation of lightgauge steel plate shear walls[J]. Journal of Structural Engineering, 2005,131(2):259-267. Chen S J, Jhang C. Cyclic behavior of low yield point steel shear walls[J]. Thin-Walled Structures, 2006,44(7):730-738. Chen S J, Jhang C. Experimental study of low-yield-point steel plate shear wall under in-plane load[J]. Journal of Constructional Steel Research, 2011,67(6):977-985. 郝际平, 曹春华, 王迎春,等. 开洞薄钢板剪力墙低周反复荷载试验研究[J]. 地震工程与工程振动,2009,29(2):79-85. 曹春华, 郝际平, 王迎春,等. 开缝薄钢板剪力墙低周反复荷载试验研究[J]. 西安建筑科技大学学报(自然科学版),2008(1):46-52. 于金光, 郝际平, 宁子健,等. 半刚性框架-槽钢十字形约束钢板剪力墙结构抗震性能试验研究[J]. 建筑结构学报, 2014(6):75-83. 郝际平, 于金光, 王先铁,等. 半刚性节点钢框架-十字加劲钢板剪力墙结构的数值分析[J]. 西安建筑科技大学学报(自然科学版),2012(2):153-158. 房晨, 郝际平, 樊春雷,等. 两种密肋框格屈曲约束低屈服点钢板剪力墙抗震性能试验研究[J]. 建筑结构学报,2017(10):38-50. 葛明兰. 半刚性框架-屈曲约束钢板剪力墙振动台试验研究与抗震性能分析[D]. 西安:西安建筑科技大学,2018. 郝际平, 袁昌鲁, 樊春雷,等. 钢板剪力墙结构基于性能的塑性设计方法研究[J]. 工程力学,2015(7):118-127. 郝际平, 樊春雷, 钟炜辉,等. 钢框架-钢板剪力墙基于中震的性能化设计方法[J]. 建筑结构,2015(3):1-7. 陈云涛, 吕西林. 联肢剪力墙抗震性能研究:试验和理论分析[J]. 建筑结构学报,2003,24(4):25-34. Gholhaki M, Ghadaksaz M B. Investigation of the link beam length of a coupled steel plate shear wall[J]. Steel and Composite Structures, 2016,20(1):107-125. Pavir A, Shekastehband B. Hysteretic behavior of coupled steel plate shear walls[J]. Journal of Constructional Steel Research, 2017, 133:19-35. Safari G M, Cheng J J R. Plastic analysis and performance-based design of coupled steel plate shear walls[J]. Engineering Structures, 2018, 166:472-484. 谭智诚. 联肢钢板剪力墙结构抗震性能分析[D]. 广州:广州大学, 2018. Borello D J, Fahnestock L A. Behavior and mechanisms of steel plate shear walls with coupling[J]. Journal of Constructional Steel Research, 2012, 74:8-16. Li C H, Tsai K C, Chang J T, et al. Cyclic test of a coupled steel plate shear wall substructure[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(9):1277-1299. 中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011-2010[S]. 北京:中国建筑工业出版社,2010. 周天华, 李文超, 管宇,等. 基于应力三轴度的钢框架循环加载损伤分析[J]. 工程力学, 2014, 31(7):146-155. 李峰. 钢板剪力墙抗震性能的试验与理论研究[D]. 西安:西安建筑科技大学, 2011. 樊春雷. 钢框架-钢板剪力墙结构基于性能的抗震设计研究[D]. 西安:西安建筑科技大学,2014. 中华人民共和国住房和城乡建设部. 建筑抗震试验规程:JGJ/T 101-2015[S]. 北京:中国建筑工业出版社, 2015.
点击查看大图
计量
- 文章访问数: 247
- HTML全文浏览量: 72
- PDF下载量: 11
- 被引次数: 0