留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强结构钢连接研究进展

李国强

李国强. 高强结构钢连接研究进展[J]. 钢结构(中英文), 2020, 35(6): 1-40. doi: 10.13206/j.gjgS20052505
引用本文: 李国强. 高强结构钢连接研究进展[J]. 钢结构(中英文), 2020, 35(6): 1-40. doi: 10.13206/j.gjgS20052505
Guoqiang Li. Progress of Research on High-Strength Structural Steel Connections[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(6): 1-40. doi: 10.13206/j.gjgS20052505
Citation: Guoqiang Li. Progress of Research on High-Strength Structural Steel Connections[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(6): 1-40. doi: 10.13206/j.gjgS20052505

高强结构钢连接研究进展

doi: 10.13206/j.gjgS20052505
基金项目: 

国家十三五重点研发计划项目(2017YFB0304701,2018YFC0705505);国家自然科学基金项目(51408428)。

详细信息
    作者简介:

    李国强,男,1963年出生,教授,博士生导师。Email:gqli@tongji.edu.cn

Progress of Research on High-Strength Structural Steel Connections

  • 摘要: 高强钢用于钢结构可节省用钢量,降低钢结构制作、运输和安装成本。由于高强钢力学性能与普通钢具有不可忽视的差异,近年来国内外学者开展了大量的高强结构钢应用研究工作。高强钢结构在工程中应用除需进行合理的构件设计外,还需为高强钢构件之间设计高效的连接以形成安全、可靠的结构。
    对高强钢的两种重要连接方法(焊接和螺栓连接)的国内外研究进展情况进行了介绍,包括:高强钢对接焊缝连接承载性能研究、高强钢角焊缝连接承载性能研究、高强钢摩擦型螺栓连接承载性能研究、高强钢承压型螺栓连接承载性能研究及12.9级高强螺栓氢致延迟断裂研究等,并着重介绍了同济大学的有关研究进展,总结了现有研究进展,展望了今后的研究工作。
  • 李国强, 王彦博, 陈素文, 等. 高强度结构钢研究现状及其在抗震设防区应用问题[J]. 建筑结构学报, 2013, 34(1):1-13.
    Sun F F, Ran M M, Li G Q, et al. Experimental and numerical study of high-strength steel butt weld with softened HAZ[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2018, 171(8):583-597.
    CEN. Eurocode 3:Design of steel structures-part 1-12:additional rules for the extension of EN 1993 up to steel grades S700:EN 1993-1-12[S]. Brussels:European Committee for Standardization, 2005.
    ANSI. Structural welding code-steel:AWS D1.1/D1.1M:2015[S]. Miami:American National Standards Institute, 2015.
    Wang Y B, Wang Y Z, Chen K, et al. Slip factors of high strength steels with shot blasted surface[J]. Journal of Constructional Steel Research, 2019, 157:10-18.
    Wang Y B, Lyu Y F, Li G Q, et al. Behavior of single bolt bearing on high strength steel plate[J]. Journal of Constructional Steel Research, 2017, 137:19-30.
    唐家豪. 12.9级高强螺栓氢致延迟断裂性能研究[D]. 上海:同济大学, 2019.
    中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017-2017[S]. 北京:中国建筑工业出版社,2018.
    Satoh K, Toyoda M, Ukita K, et al. Prevention of weld crack in HT80 heavy plates with undermatching electrodes and its application to fabricating penstock[J]. Transactions of the Japan Welding Society, 1978, 9(1):17-21.
    Howden D G. Effective use of weld metal yield strength for HYSteels[M/OL]. Washington, D. C.:National Academy Press, 1983. https://www.nap.edu/read/19462/chapter/1#iv.
    Barsoum Z, Khurshid M. Ultimate strength capacity of welded joints in high strength steels[J]. Procedia Structural Integrity, 2017(5):1401-1408.
    Khurshid M, Barsoum Z, Barsoum I. Load carrying capacities of butt welded joints in high strength steels[J]. Journal of Engineering Materials and Technology, 2015, 137(4). Doi: 10.1115/1.4030687.
    Valkonen I. Ultimate limit load in welded joints and in net sections of high strength steels with yield stress 960 MPa[J]. Procedia Materials Science, 2014(3):720-725.
    Tornblom S. Undermatching butt welds in high strength steel[D]. Lulea:Lulea University of Technology, 2007.
    Loureiro A J. Effect of heat input on plastic deformation of undermatched welds[J]. Journal of Materials Processing Technology, 2002, 128(1):240-249.
    Björk T, Ahola A, Tuominen N. On the design of fillet welds made of ultra-high-strength steel[J]. Welding in the World, 2018, 62(5):985-995.
    Björk T, Toivonen J, Nykänen T. Capacity of fillet welded joints made of ultra high-strength steel[J]. Welding in the World, 2012, 56(3/4):71-84.
    Ran M M, Sun F F, Li G Q, et al. Experimental study on the behavior of mismatched butt welded joints of high strength steel[J]. Journal of Constructional Steel Research, 2019, 153:196-208.
    Guo H, Wan J, Liu Y, et al. Experimental study on fatigue performance of high strength steel welded joints[J]. Thin-Walled Structures, 2018, 131:45-54.
    Lundin C D, Gill T, Qiao C Y. Heat affected zones in low carbon microalloyed steels[J]. ASM International, 1990:249-256.
    Denys R. The effect of HAZ softening on the fracture characteristics to modern steel weldments and the practical integrity of marine structures made by TMCP steels[C]//Proc. EVALMAT 89. Kobe:1998:1013-1027.
    Akselsen O M, Rorvik G, Onsoien M I, et al. Assessment and predictions of HAZ tensile properties of high-strength steels[J]. Weld. J., 1989, 68(9):356-362.
    Hochhauser F, Ernst W, Rauch R, et al. Influence of the soft zone on the strength of welded modern HSLA steels[J]. Welding in the World, 2012, 56(5/6):77-85.
    Costa J D M, Ferreira J A M, Abreu L P M. Fatigue behaviour of butt welded joints in a high strength steel[J]. Procedia Engineering, 2010, 2(1):697-705.
    Gharibshahiyan E, Raouf A H, Parvin N, et al. The effect of microstructure on hardness and toughness of low carbon welded steel using inert gas welding[J]. Materials & Design, 2011, 32(4):2042-2048.
    Maurer W, Ernst W, Rauch R, et al. Electron beam welding of a TMCP steel with 700 MPa yield strength[J]. Welding in the World, 2012, 56(9):85-94.
    杨喜胜, 杨滨, 彭云, 等. 低合金调质高强钢焊接软化行为研究[J]. 热加工工艺, 2013, 42(17):32-36.
    Ramazani A, Mukherjee K, Abdurakhmanov A, et al. Micro-macro-characterisation and modelling of mechanical properties of gas metal arc welded (GMAW) DP600 steel[J]. Materials Science and Engineering:A, 2014, 589:1-14.
    Ahiale G K, Oh Y. Microstructure and fatigue performance of buttwelded joints in advanced high-strength steels[J]. Materials Science and Engineering:A, 2014, 597:342-348.
    Gong H, Wang S, Knysh P, et al. Experimental investigation of the mechanical response of laser-welded dissimilar blanks from advanced- and ultra-high-strength steels[J]. Materials & Design, 2016, 90:1115-1123.
    Amraei M, Skriko T, Bjork T, et al. Plastic strain characteristics of butt-welded ultra-high strength steel (UHSS)[J]. Thin-Walled Structures, 2016, 109:227-241.
    Liu X, Chung K, Ho H, et al. Mechanical behavior of high strength S690-QT steel welded sections with various heat input energy[J]. Engineering Structures, 2018, 175:245-256.
    Sun F F, Ran M M, Li G Q, et al. Strength model for mismatched butt welded joints of high strength steel[J]. Journal of Constructional Steel Research, 2018, 150:514-527.
    Maurer W, Ernst W, Rauch R, et al. Evaluation of the factors influencing the strength of HSLA steel weld joint with softened HAZ[J]. Welding in the World, 2015, 59(6):809-822.
    Ragu Nathan S, Balasubramanian V, Malarvizhi S, et al. Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints[J]. Defence Technology, 2015, 11(3):308-317.
    Mochizuki M, Shintomi T, Hashimoto Y, et al. Analytical study on deformation and strength in HAZ-softened welded joints of finegrained steels[J]. Welding in the World, 2004, 48(9):2-12.
    Kitano H, Okano S, Mochizuki M, et al. Evaluation of the effect of strength mismatch in undermatched joints on the static tensile strength of welded joints by considering microstructure:mechanical discussion on 950 MPa class steel plate welded joint[J]. Welding International, 2014, 28(10):766-774.
    Satoh K, Toyoda M. Static strength of welded plates including soft interlayer under tension across a weld line[J]. Transactions of the Japan Welding Society, 1970, 1(2):10-17.
    Shehata F. Effect of plate thickness on mechanical properties of steel arc welded joints[J]. Materials & Design, 1994, 15(2):105-110.
    Komizo Y. Performance of welded joints in TMCP steel plates[J]. Welding International, 1991, 5(8):598-601.
    De Meester B. The weldability of modern structural TMCP steels[J]. ISIJ International, 1997, 37(6):537-551.
    赵逍. 超500 MPa级高强钢对接焊缝连接承载性能与设计方法研究[D]. 上海:同济大学, 2020.
    Rasche C, Kuhlmann U. Investigations on Longitudinal Fillet Welded Lap Joints of HSS[C]//Proceedings of Nordic Steel Construction Conference(NSCC2009). Malmö, Sweden:2009:462-469.
    Günther H, Hildebrand J, Rasche C, et al. Welded connections of high-strength steels for the building industry[J]. Welding in the World, 2012, 56(5):86-106.
    Rasche C, Kuhlmann U. The load bearing capacity of fillet welded connections of high strength steels[J]. Iabse Symposium Report,2010, 81(34):71-78.
    Kuhlmann U, GüNther H, Rasche C. High-strength steel fillet welded connections[J]. Steel Construction, 2008, 1(1):77-84.
    BjöRk T, Penttilä T, NykäNen T. Rotation capacity of fillet weld joints made of high-strength steel[J]. Welding in the World, 2014, 58(6):853-863.
    CEN. Eurocode 3:Design of steel structures-part 1-8:design of joints:EN 1993-1-8[S]. Brussels:European Committee for Standardization, 2005.
    Lu H, Dong P, Boppudi S. Strength analysis of fillet welds under longitudinal and transverse shear conditions[J]. Marine Structures, 2015, 43:87-106.
    施刚, 陈玉峰. 高强度钢材焊缝连接试验研究[J]. 工业建筑, 2016, 46(7):47-51.
    Sun F F, Ran M M, Li G Q, et al. Mechanical behavior of transverse fillet welded joints of high strength steel using digital image correlation techniques[J]. Journal of Constructional Steel Research, 2019. Doi: 10.1016/j.jcsr.2019.105710.
    Ran M M, Sun F F, Li G Q, et al. Mechanical behavior of longitudinal lap-welded joints of high strength steel:experimental and numerical analysis[J]. Engineering Structures, 2020.
    冉明明. 高强钢焊缝连接的力学性能和设计理论研究[D]. 上海:同济大学, 2019.
    Kulak G L, Fisher J W. A5l4 steel joints fastened by A490 bolts[R]. Bethlehem, Pennsylvania:Friz Engineering Laboratory, Department of Civil Engineering, Lehigh University, 1967.
    Kulak G L, Fisher J W, Struik J H. Guide to design criteria for bolted and rivet joints[M]. 2nd Ed. New York:John Wiley & Sons, 1987.
    Cruz A, Simões R, Alves R. Slip factor in slip resistant joints with high strength steel[J]. Journal of Constructional Steel Research, 2012,70:280-288.
    李友志, 季小莲,吴耀华. 高强度结构钢高强度螺栓摩擦型连接节点试验研究[J]. 建筑结构, 2015(21):21-24.
    陈坤. 超500 MPa级高强钢常见摩擦面抗滑移系数试验研究[D]. 上海:同济大学, 2017.
    Wang Y B, Wang Y Z, Chen K, et al. Slip factor between shot blasted mild steel and high strength steel surfaces[J]. Journal of Constructional Steel Research, 2020. Doi: org/10.1016/j.jcsr.2020.105969.
    Wang Y B, Lyu Y F, Wang Y Z, et al. Study on the slip and bearing behavior of bolted connection with high strength steel members[C]//International Conference on Engineering Research and Practice for Steel Construction. Hong Kong:2018:5-7.
    Wang Y B, Wang Y Z, Chen K, et al. Slip factor of high strength steel with inorganic zinc-rich coating[J]. Thin-Walled Structures, 2020. Doi: 10.1016/j.tws.2019.106595.
    Kim H J, Yura J A. The effect of ultimate-to-yield ratio on the bearing strength of bolted connections[J]. Journal of Constructional Steel Research, 1999, 49:255-269.
    Aalberg A, Larsen P K. Bearing strength of bolted connections in high strength steel[C]//Nordic Steel Construction Conference. Helsinki:2001:859-866.
    Aalberg A, Larsen P K. The effect of steel strength and ductility on bearing failure of bolted connections[C]//Proceedings of the 3rd European Conference on Steel Structures. Universidad de Coimbra, 2002:869-878.
    Rex C Q, Easterling W S. Behavior and modeling of a bolt bearing on a single plate[J]. Journal of Structural Engineering, 2003, 129(6):792-800.
    Može P, Beg D. High strength steel tension splices with one or two bolts[J]. Journal of Constructional Steel Research, 2010, 66(8/9):1000-1010.
    Može P, Beg D. A complete study of bearing stress in single bolt connections[J]. Journal of Constructional Steel Research, 2014, 95:126-140.
    Može P. Bearing strength at bolt holes in connections with large end distance and bolt pitch[J]. Journal of Constructional Steel Research, 2018,147:132-144.
    Teh L H,Uz M E. Effect of loading direction on the bearing capacity of cold-reduced steel sheets[J]. Journal of Structural Engineering, 2014, 140(12). Doi: 10.1061/(ASCE)ST.1943-541X.0001107.
    Teh L H,Uz M E. Ultimate tilt-bearing capacity of bolted connections in cold-reduced steel sheets[J]. Journal of Structural Engineering, 2017, 143(4). Doi: 10.1061/(ASCE)ST.1943-541X.0001702.
    季小莲, 吴耀华, 何文汇. 承压型高强度螺栓连接Q160低屈服点钢板的承压强度试验研究[C]//2015中国钢结构行业大会论文集. 济南:2015.
    吴耀华, 张志远, 纪洪广. 高强度螺栓连接中钢板孔壁承压强度试验研究[J]. 钢结构, 2015,30(12):28-31.
    Lyu Y F, Wang Y B, Li G Q, et al. Numerical analysis on the ultimate bearing resistance of single-bolt connection with high strength steels[J]. Journal of Constructional Steel Research, 2019, 153:118-129.
    吕一凡,李国强,王彦博. 超500 MPa级高强钢承压型螺栓连接承载力试验研究[J]. 工程力学,2019,36(5):200-207

    ,215.
    Lyu Y F, Li G Q, Wang Y B. Behavior-based resistance model for bearing-type connection in high strength steels[J]. Journal of Structural Engineering, 2020. Doi: 10.1061/(ASCE)ST.1943-541X.0002639.
    AISC. Specifications for structural steel buildings:ANSI/AISC 360-16[S]. Chicago:American Institute of Steel Construction, Inc, 2016.
    Puthli R, Fleischer O. Investigations on bolted connections for high strength steel members[J]. Journal of Constructional Steel Research, 2011, 57:313-326.
    潘斌, 石永久, 王元清. Q460等级高强度钢材螺栓抗剪连接孔壁承压性能有限元分析[J]. 建筑科学与工程学报, 2012(2):48-54.
    郭宏超, 皇垚华, 刘云贺, 等. Q460高强钢螺栓连接承载性能试验研究[J]. 土木工程学报, 2018(3):81-89.
    郭宏超,肖枫,李炎隆, 等. Q690高强钢螺栓抗剪连接承载性能试验研究[J]. 实验力学,2018,33(4):583-591.
    Wang Y B, Lyu Y F, Li G Q, et al. Bearing-strength of high strength steel plates in two-bolt connections[J]. Journal of Constructional Steel Research, 2019, 155:205-218.
    Može P, Beg D. Investigation of high strength steel connections with several bolts in double shear[J]. Journal of Constructional Steel Research, 2011,67(3):333-347.
    杨昌, 张雷, 杨凤, 等. 螺栓群剪力分配与螺栓布置关系的研究[J]. 南昌大学学报(工科版), 2016,38(3):267-271.
    Lyu Y F, Li G Q, Wang Y B, et al. Bearing behavior of multi-bolt high strength steel connections[J]. Engineering Structures, 2020. Doi: 10.1016/j.engstruct.2020.110510.
    Beghini M, Benamati G, Bertini L. Hydrogen embrittlement characterization by disk pressure tests:test analysis and application to high chromium martensitic steels[J]. Journal of Engineering Materials & Technology, 1996, 118(2):179-185.
    Liou H Y, Shieh R I, Wei F I, et al. Roles of microalloying elements in hydrogen induced cracking resistant property of HSLA steels[J]. Corrosion, 1993, 49(5):389-398.
    Beachem C D. A new model for hydrogen-assisted cracking (hydrogen "embrittlement")[J]. Metall Trans, 1972, 3(2):437-451.
    Chun Y S, Lee J L, Bae C M, et al. Caliber-rolled TWIP steel for high-strength wire rods with enhanced hydrogen-delayed fracture resistance[J]. Scripta Materialia, 2012, 67(7/8):681-684.
    惠卫军,董瀚,翁宇庆. 耐延迟断裂高强度螺栓钢研究开发[J]. 钢铁学报,2001,36(3):69-73.
    惠卫军,董瀚,王毛球,等. 1300 MPa级高强度螺栓钢[J]. 钢铁学报,2002,37(3):37-42.
    卢海波,蔡珣,熊云奇,等. 14.9级螺栓研制及在汽车发动机上的应用[J]. 上海交通大学学报,2005,39(7):1105-1108.
    孙永伟,范芳雄. 14Cr17Ni2钢制螺栓断裂原因分析[J]. 金属热处理学报,2018,43(10):247-252.
  • 加载中
计量
  • 文章访问数:  564
  • HTML全文浏览量:  103
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-25

目录

    /

    返回文章
    返回