Volume 39 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Ningrui Wang, Fu Zhang, Minger Wu. Air-Inflated Rib Membrane Structure and Its Applications[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(2): 20-29. doi: 10.3724/j.gjgS23072902
Citation: Ningrui Wang, Fu Zhang, Minger Wu. Air-Inflated Rib Membrane Structure and Its Applications[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(2): 20-29. doi: 10.3724/j.gjgS23072902

Air-Inflated Rib Membrane Structure and Its Applications

doi: 10.3724/j.gjgS23072902
  • Received Date: 2023-07-29
    Available Online: 2024-03-29
  • Publish Date: 2024-02-25
  • Air-inflated rib membrane structure is a kind of structure or component using high-pressure air-inflated ribs as support system, which can create space by connecting multiple air-inflated ribs. It has the advantages of lightweight and portable, fast transportation, low energy consumption, safety and reliability. In order to create the structure with large span and strong load-bearing capacity, the scholars at home and abroad have conducted thorough researches on this issue, and the air-inflated rib membrane structures have been widely used and developed, which have become symbolic buildings in many cities at home and abroad. Firstly, the structural form of the air-inflated rib membrane structure, and the function and design requirements of internal pressure were summarized in this paper. The internal pressure in engineering applications was described briefly, the methods of monitoring the performance and the studies of failure performance were outlined. Then, a summary of examples of the air-inflated rib membrane structure used in engineering projects was concluded. This structural form has been widely used in exhibition halls, sports venues, laboratories, aircraft hangars, warehouses and other practical engineering projects. In large-span air-inflated structures, the trip-cage type air-inflated rib membrane structure provides an effective method for connecting multiple air-ribs. The strip connection type can greatly improve the bearing capacity of a single air-inflated rib and the cooperative working ability between air-inflated ribs. The structural characteristics and engineering applications of large aircraft hangars built by BUILDAIR Company using the strip-cage type air-inflated rib membrane structure were emphatically introduced. Finally, the relationship between the diameter of the air-inflated rib and the span of the structure in engineering applications was investigated. The result shows that the ratio between the diameter of the air-inflated rib and the span of the structure is about 1/10 in most of the strip-cage type air-inflated rib membrane structure engineering cases. However, the selection of the diameter needs to be determined by design analysis according to the actual engineering conditions.
  • loading
  • [1]
    陈务军. 膜结构工程设计[M]. 北京:中国建筑工业出版社, 2005.
    [2]
    薛素铎. 充气膜结构设计与施工技术指南[M]. 北京:中国建筑工业出版社, 2019.
    [3]
    孙茹洁, 张天娇. 轻型易变结构:膜结构[J]. 中外建筑, 2013, 143(3):90-92.
    [4]
    蓝天. 当代膜结构发展概述[J]. 世界建筑, 2000(9):17-20.
    [5]
    Buildair. Inflatable structures[EB/OL].[2019-04-05] https://buildair. com/inflatable-structure/.
    [6]
    冯远红, 杨风雷, 闫文魁, 等. 拱形气肋承载力分析与试验[J]. 建筑结构, 2009, 39(增刊2):398-400.
    [7]
    杜振勇. 充气梁弯皱特性研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
    [8]
    张立乾, 冯中华, 闫晶, 等. 一种快速架设的充气桥梁结构研究[J]. 建筑结构, 2022, 52(增刊2):1662-1667.
    [9]
    吕强, 叶正寅, 李栋. 充气结构机翼的设计和试验研究[J]. 飞行力学, 2007, 98(4):77-80

    , 85.
    [10]
    颜卫亨, 胡云龙, 张茂功, 等. 气肋式充气拱结构的应用[C]//天津大学, 上海交通大学. 第十届全国现代结构工程学术研讨会论文集. 上海:2010.
    [11]
    周子龙, 严帅, 陈龙龙, 等. 大跨气肋与拉片式多气室拱形充气膜结构分析研究[C]//天津大学, 天津市钢结构学会. 第二十三届全国现代结构工程学术研讨会论文集. 兰州:2023:21-29.
    [12]
    王宁睿. 气肋式充气膜结构褶皱及损伤失效性能研究[D]. 上海:同济大学, 2023.
    [13]
    川口卫. 構造と感性構造デザインの原理と手法[M]. 東京:鹿島出版会, 2015.
    [14]
    Gonzalez J, Marcipar J, Estruch C, et al. Structural analysis and design of a large inflatable hangar for aircrafts[J]. Structural Engineering International, 2022, 33:3473-3477.
    [15]
    叶云凌. 海上浮式充气膜结构承载性能研究[D]. 武汉:武汉理工大学, 2019.
    [16]
    Li Q, Guo X, Qing Q, et al. Dynamic deflation assessment of an air inflated membrane structure[J]. Thin-Walled Structures, 2015, 94:446-456.
    [17]
    李庆松. 气肋式膜结构充气展开及泄气倒塌分析[D]. 上海:上海交通大学, 2016.
    [18]
    Partners M. Microcity sales office by mossine partners[EB/OL].[2013-10-24]. https://www.designrulz.com/design/2013/10/microc-itysales-office-by-mossine-partners-moscow-rusia/.
    [19]
    Holstroy. Пневмокаркасное сооружение, офисный центр[EB/OL].[2014-07-30]. https://www.holstroy.com.ua/pnevmo/pnevmo14.htm.
    [20]
    Jungjohann H, Woodington W. Ontario celebration zone pavilion:a large pneumatic structure[J]. Procedia Engineering, 2016, 155:507- 515.
    [21]
    陈博轩. 大跨度冰壳结构设计与监测方法研究[D]. 哈尔滨:哈尔滨工业大学, 2018.
    [22]
    众建筑. 三色顶:众行拱, 蓝天泡, 绿洲廊, 苏州/[EB/OL].[2021- 03-22]. https://www.gooood.cn/tricolor-trilogy-accordion-arcade-bluesky-blues-orbital-oasis-china-by-pao.htm.
    [23]
    Ishii K. Membrane structures in Japan[M]. Tokyo:SPS Publishing Company, 1995.
    [24]
    Holstroy. Пневмокаркасное сооружение, cпорткомплекс[EB/OL].[2015-07-29]. https://www.holstroy.com.ua/pnevmo/pnevmo16.htm.
    [25]
    Holstroy. Зал для минифутбола[EB/OL].[2016-03-27]. https://www.holstroy.com.ua/pnevmo/pnevmo33.htm.
    [26]
    Holstroy. Накрытие бассейна[EB/OL].[2017-06-20]. https://www. holstroy.com.ua/pnevmo/pnevmo63.htm.
    [27]
    青岛艾尔兄弟科技有限公司. 气肋式膜建筑-充气体育馆[EB/OL].[2020-12-17]. http://www.sdairbrother.cn/tiyuguananli/46-123.html.
    [28]
    万宗帅. 新型充气膜混合结构形态分析及受力性能研究[D]. 哈尔滨:哈尔滨工业大学, 2020.
    [29]
    Luchsinger R H, Pedretti M, Reinhard A. Pressure induced stability:from pneumatic structures to tensairity[J]. Journal of Bionics Engineering, 2004(3):1-8.
    [30]
    Reporter S. Inflated roof structure for heathrow airport central bus station[EB/OL].[2006-01-19]. https://sdblimited.com/Innovation.html.
    [31]
    许若飞, 杜国福. 发展野战充气式卫生帐篷的探讨[J]. 医疗卫生装备, 2013, 34(4):85-87.
    [32]
    Buildair. Hangar H20 Santiago[EB/OL].[2019-05-30]. https://buildair. com/hangar-h20-santiago/.
    [33]
    Buildair. Hangar H45 Budapest[EB/OL].[2019-05-29]. https://buildair. com/hangar-h45-budapest/.
    [34]
    龚景海, 李中立, 宋小兵. 气承与气肋组合式充气膜结构的研究与应用[J]. 空间结构, 2013, 19(1):72-78.
    [35]
    陈戊荣, 陈兆荣, 苏运升, 等. 充气膜结构病毒检测实验室建造全过程工程实践[C]//2022年全国工程建设行业施工技术交流会论文集(下册). 杭州:2022:820-823.
    [36]
    Складское помещение[EB/OL].[2015-08-19]. https://www.holstroy. com.ua/pnevmo/pnevmo24.htm.
    [37]
    青岛艾尔兄弟科技有限公司. 高耸气肋膜重要物项围护结构的 研制[EB/OL].[2022-09-22]. https://mp.weixin.qq.com/s/ta84b57Dcz383HMBajvVwA.
    [38]
    Wu A. Inflatable arches chosen to reimagine St. Catherine street construction site[EB/OL].[2016-10-10]. https://www.archdaily.com/796802/in-flatable-arches-chosen-to-reimagine-st-catherine-street-co nstruction-site.
    [39]
    Luchsinger R H, Pedretti M, Steingruber P, et al. Light weight structures with tensairity[C]//International Symposium Shell and Spatial Structures from Models to Realization, IASS2004 Symposium. Montpellier:France, 2004.
    [40]
    Buildair. Buildair[EB/OL].[2021-05-06]. https://buildair.com/.
    [41]
    Buildair. Hangar H54 Getafe[EB/OL].[2019-04-15]. https://buildair.com/hangar-h54-getafe/.
    [42]
    Buildair. Hangar H75 Jeddah[EB/OL].[2019-07-16]. https://buildair. com/hangar-h75-jeddah/.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (48) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return