Citation: | Ting Zhu, Shengbin Gao. Research on Extremely Low-Cycle Fatigue Crack Initiation and Propagation of Thick-Walled Steel Box-Section Bridge Piers[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(10): 16-24. doi: 10.13206/j.gjgs20061203 |
[1] |
廖芳芳,王伟,陈以一,等. 往复荷载下钢结构节点的超低周疲劳断裂预测[J]. 同济大学学报(自然科学版), 2014,42(4):539-546.
|
[2] |
Kuroda M. Extremely low cycle fatigue life prediction based on a new cumulative fatigue damage model[J]. International Journal of Fatigue, 2001, 24(6):699-703.
|
[3] |
Shimada K, Komotori J, Shimizu M, et al. The applicability of the Manson-Coffin law and Miner's law to extremely low cycle fatigue[J]. Transactions of the Japan Society of Mechanical Engineers (Part A), 1987, 53(491):1178-1185.
|
[4] |
Nip K H, Gardner L, Davies C M, et al. Extremely low cycle fatigue tests on structural carbon steel and stainless steel[J]. Journal of Constructional Steel Research, 2010, 66(1):96-110.
|
[5] |
Tateishi K, Hanji T, Minami K. A prediction model for extremely low cycle fatigue strength of structural steel[J]. International Journal of Fatigue, 2007, 29(5):887-896.
|
[6] |
Tateishi K, Chen T, Hanji T. Extremely low cyclic fatigue assessment method for unstiffened cantilever steel columns[J]. Doboku Gakkai Ronbunshuu A, 2008, 64(2):288-296.
|
[7] |
Ge H B, Kang L, Tsumura Y. Extremely low-cycle fatigue tests of thick-walled steel bridge piers[J]. Journal of Bridge Engineering, 2013, 18(9):858-870.
|
[8] |
Ge H B, Kang L. A damage index-based evaluation method for predicting the ductile crack initiation in steel structures[J]. Journal of Earthquake Engineering, 2012, 16(5/6):623-643.
|
[9] |
Chaboche J L. Time-independent constitutive theories for cyclic plasticity[J]. International Journal of Plasticity, 1986, 2(2):149-188.
|
[10] |
王娴明, 徐波. 反复荷载作用下钢筋的本构关系[J]. 建筑结构学报, 1992, 13(6):41-48.
|
[11] |
Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3):201-217.
|
[12] |
Kanvinde A M, Deierlein G G. Void growth model and stress modified critical strain model to predict ductile fracture in structural steels[J]. Journal of Structural Engineering, 2006, 132(12):1907-1918.
|
[13] |
Bao Y, Wierzbicki T. On the cut-off value of negative triaxiality for fracture[J]. Engineering Fracture Mechanics, 2005, 72:1049-1069.
|
[14] |
Jia L J, Fujie W, Ikai T, et al. Dependency of mesh size and loading history on crack propagation energy of cyclic ductile fracture model[J]. Engineering Fracture Mechanics, 2019, 215:117-137.
|
[15] |
Kang L, Ge H B, Kato T. Experimental and ductile fracture model study of single-groove welded joints under monotonic loading[J]. Engineering Structures, 2015, 85(15):36-51.
|
[16] |
池世粮, 高圣彬. 厚壁钢桥墩的超低周疲劳裂纹萌生寿命预测[J]. 河北工程大学学报(自然科学版), 2016, 33(1):42-48.
|
[17] |
中华人民共和国住房和城乡建设部. 建筑抗震试验方法规程:JGJ 101-96[S]. 北京:中国建筑工业出版社,1997.
|
[18] |
Usami T, Gao S B, Ge H B. Stiffened steel box columns. Part 2:Ductility evaluation[J]. Earthquake Engineering and Structural Dynamics, 2000, 29:1707-1722.
|