Ganping Shu, Xiu Xu, Yueyan Gu, Qinglin Jiang, Baofeng Zheng. Study on the Lateral-Torsional Buckling of Duplex Stainless Steel Welded I-Section Flexural Members[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 1-25. doi: 10.13206/j.gjgSE20081701
Citation: Ganping Shu, Xiu Xu, Yueyan Gu, Qinglin Jiang, Baofeng Zheng. Study on the Lateral-Torsional Buckling of Duplex Stainless Steel Welded I-Section Flexural Members[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 1-25. doi: 10.13206/j.gjgSE20081701

Study on the Lateral-Torsional Buckling of Duplex Stainless Steel Welded I-Section Flexural Members

doi: 10.13206/j.gjgSE20081701
Funds:

The research work described in this paper is supported by National Science Foundation of China through the project No. 51808110, Jiangsu Science Foundation through the project No. BK20180399, National Key Technologies R & D Program through the projects No. 2018YFC0705502-4.

  • Received Date: 2020-12-20
    Available Online: 2021-05-08
  • Stainless steel structure has good mechanical properties and excellent corrosion resistances, which is one of the best choices of the structural schemes for important infrastructures in highly corrosive environments. Related researches on stainless steel structures began from 1960s, and have grew rapidly in the past 20 years as the more and more attentions have been taken to the durability and the safety of structures. Currently, researches on stainless steel structures mainly focused on the material properties and the performance of cold-formed members, while the researches on the behavior of the stainless steel welded members were rare. Besides, the material characteristic of stainless steel has not been fully incorporated into the design method. This study would report an experimental study on the lateral-torsional buckling of duplex stainless steel welded I-section flexural members, and modify the related design formula to include the material properties characteristic of duplex stainless steel.
    Firstly, a four-point bending test rig with the strong constraints at the loading points was proposed for the lateral-torsional buckling test in this study. In this test rig, to clarify the boundary conditions and reduce the possible redundant constraints from the test rig applied to the test specimen, the lateral constraints were configured at the same location as that of the loading points, which was different from the traditional test rig that following the concept to release the constraints at the loading points. A series tests were then conducted for seven flexural members to obtained full set of test data, including the initial geometric imperfection, the material properties, and the failure mode and capacity. The test data was compared with the predictions of Eurocode and Chinese code. Finite element models of the welded stainless steel flexural members were established and verified by test data, and then parametric analysis were carried out. Based on the results of parametric analysis, the design formulas for the lateral-torsional buckling were modified considering the strain hardening characteristic of stainless steel.
    All the specimens showed the lateral-torsional buckling except the S-DI-150-3000, which had the local-global interaction buckling. Comparisons between the test data and the predicted values of the Eurocode and the Chinese code showed that the predicted values of the two design codes were both conservative. The mean ratios of the test values over the predicted values were 1. 23 and 1. 18, respectively. The finite element model can accurately predict the bearing capacity. The mean ratio of the test values over the bearing capacity obtained by finite element analysis was 1. 06. Based on the analysis results and the characteristic of stainless steel, a two-stage formula was established. When the slenderness was not less than 0. 54, the modified Perry formula was used to express the relationship between the slenderness and the reduction factor. When the slenderness was less than 0. 54, a linear relationship between the slenderness and the reduction factor was approximately employed. To make full use of the characteristic of considering strain hardening after yielding, the reduction factor was allowed to be greater than 1. 0 with the maximum value of the ratio of the tensile stress over the nominal yield stress. Comparisons of the test data and the predictions of the proposed formulas showed that the proposed formula can accurately predict the bearing capacity. The mean ratio of the test values over the predicted values was 1. 00, with a low scatter of 0. 11.
  • Bredenkamp P J, Van Den Berg G J. The lateral torsional buckling strength of cold-formed stainless steel beams[C]//Twelfth International Specialty Conference on Cold-Formed Steel Structures:Recent Research and Developments in Cold-Formed Steel Design and Construction. Rolla, MO:University of Missouri-Rolla, 1994:539-549.
    Bredenkamp P J, Barnard H. The lateral torsional buckling strength of hot-rolled stainless steel beams[J]. The Structural Engineer, 1996, 74(19):316-319.
    Burgan B A, Baddoo N, Gilsenan K A. Structural design of stainless steel members-comparison between Eurocode 3, part 1.4 and test results[J]. Journal of Constructional Steel Research, 2000, 54:51-73.
    Stagenberg H. Structural design of stainless steel welded I-beams, I-columns, and beam-columns[R]. Germany:European Coal and Steel Community, 2000.
    Niu S, Rasmussen K J R, Fan F. Local-global interaction buckling of stainless steel I-beams. I:experimental investigation[J]. Journal of Structural Engineering, 2014,141(8).DOI: 10.1061/(ASCE)ST.1943-541X.0001137.
    Niu S, Rasmussen K J R, Fan F. Local-global interaction buckling of stainless steel I-beams. II:numerical study and design[J]. Journal of Structural Engineering, 2014.DOI: 10.1061/(ASCE)ST.1943-541X.0001131.
    王元清, 高博, 戴国欣,等. 焊接不锈钢工字形截面梁整体稳定性试验研究[J]. 建筑结构学报,2011, 32(11):143-148.
    王元清, 高博, 戴国欣,等. 焊接工字形截面不锈钢受弯构件的整体稳定性分析[J]. 沈阳建筑大学学报(自然科学版), 2010, 26(6):1021-1026.
    中华人民共和国建设部. 钢结构设计规范:GB 50017-2003[S]. 北京:中国计划出版社, 2003.
    沈晓明. 不锈钢受弯构件及构件中的受压板件(组)的理论分析和试验研究[D]. 南京:东南大学, 2011.
    舒赣平, 辛连春, 郑宝锋,等. 不锈钢焊接工字形截面梁整体稳定性分析[J]. 工业建筑, 2015,45(12):23-31.
    Zheng B F, Shu G P, Xie F Z, et al. Design of cold-rolled stainless steel rectangular hollow section columns[J]. Journal of Constructional Steel Research, 2020, 170.DOI: 10.1016/j.jcsr-2020.106072.
    The Steel Construction Institute.Design manual for structural stainless steel[S].4th ed. UK:The Steel Construction Institute, 2017.
    中华人民共和国住房和城乡建设部.钢结构施工质量验收标准:GB 50205-2020[S]. 北京:中国计划出版社,2020.
    全国钢标准化技术委员会. 金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1-2010[S]. 北京:中国标准出版社, 2010.
    Gardner L, Nethercot D A. Experiments on stainless steel hollow section-part1:material and cross-sectional behavior[J]. Journal of Constructional Steel Research, 2004, 60(9):1291-1318.
    Rasmussen K J R. Full range of stress-strain curves for stainless steel alloys[J]. Journal of Constructional Steel Research, 2003, 59(1):47-61.
    ECS. Eurocode 3:design of steel structures-part 1.4:general rules-supplementary rules for stainless steels:EN 1993-1-4[S]. Brussels:European Committee for Standardization,2006.
    中国工程建设标准化协会.不锈钢结构技术规程:CECS 410:2015[S].北京:中国计划出版社,2015.
    Yuan H X, Wang Y Q, Shi Y J, et al. Residual stress distributions in welded stainless steel sections[J]. Thin-Walled Structures,2014,79:38-51.
    全国钢标准化技术委员会.焊接H型钢:YB 33814-2017[S]. 北京:中国标准出版社, 2017.
    全国钢标准化技术委员会.热轧H型钢和剖分T型钢:GB/T 11263-2017[S]. 北京:中国标准出版社,2017.
    Rasmussen K J R, Rondal J. Strength curves for metal columns[J]. Journal of Structural Engineering, 1997,123:721-728.
  • Relative Articles

    [1]Yinquan Yu, Zhe Wang, Chang Chai, Lijun Wang, Houjun Xu. Overview of China’s Steel Structure Codes and Standards System[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 58-67. doi: 10.13206/j.gjgS24090520
    [2]Jingfeng Liu, Zhenming Chen, Hongli Yan, Minfang Wan, Lei Jiang. Research Progress and Practice of Steel Structure Connection Technology[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 93-100. doi: 10.13206/j.gjgS24083026
    [3]Zhenming Chen, Peng Wang, Minfang Wan, Bing Lin. Engineering Practice of Steel Structure Intelligent Manufacturing Technology[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 80-86. doi: 10.13206/j.gjgS24083025
    [4]Xianshun Li, Kai Zhang. Comparative Study on Fireproofing Design of Steel Structures in Petrochemical Industry Between Chinese and American Standards[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(6): 42-47. doi: 10.13206/j.gjgS23041001
    [5]Shuxin Liu, Yongqian Zhang, Yuan Liu, Hongpeng Sun. Status and Prospect of Boiler Steel Structure Technology Development[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 56-62. doi: 10.13206/j.gjgS24101036
    [6]Xiaoshan Gu. Development and Practice of Steel Structure Technology for Industrial Buildings[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 40-45. doi: 10.13206/j.gjgS24101228
    [7]Jiping Hao, Shaofan Chen, Junfen Yang. Further Discussion on the Development of Steel Structure Theory and the Evolution of Steel Structure Textbooks[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 77-83. doi: 10.13206/j.gjgS24092801
    [8]Bingchuan Tang, Jiepeng Liu. Development of Intelligent Manufacturing Technology for Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 119-126. doi: 10.13206/j.gjgS24052122
    [9]Ailin Zhang, Lan Tao, Xinxia Li, Yanxia Zhang. Research on Refined Installation Management of Fully Dry-Connected Prefabricated Slab Based on BIM+3D Laser Scanning Technology[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(3): 43-50. doi: 10.13206/j.gjgS23012101
    [10]HAN Ming-lan, SHI Jian-hua, SHI Zhen-hai, WANG Yan. Analysis on Seismic Properties of Embedded and Reinforced Prefabricated Connection with Cantilever Beam[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(1): 1-12. doi: 10.13206/j.gjgS22110101
    [11]Wenzhong Wu. Stochastic Response and Controlling to Earthquake Wave in Compound Periodic Steel Structure[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(12): 48-53. doi: 10.13206/j.gjgS23063004
    [12]ZHANG Jin, WANG Li-jun, YANG Lyu-lei, GONG Min-feng. Discussion and Improvement Research on Performance-Based Seismic Design Method for Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(1): 37-65. doi: 10.13206/j.gjgS22121903
    [13]Lingxiao Zuo, Weitong Yi, Lei Zhu, Donglin Lyu, Hailin Sun. Methods for Determining Ultimate Bearing Capacity of Steel Beam-Column Joints Based on Moment-Rotation Curves[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(5): 18-27. doi: 10.13206/j.gjgS22031101
    [14]Chuang Zhao, Wenyan Zhao, Zuosheng Cao, Changgang Liu. Research on Integral Lifting of Floating Truss Structure Based on Ring Hoop Reinforcement System[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(7): 41-51. doi: 10.13206/j.gjgS22021001
    [15]Yansheng Liu, Zhigang Ma, Qingxiang Li, Guanghai Cui. Structural Design of Xumi Mountain in the Second Phase Project of Zhejiang Buddhist College[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(5): 16-23. doi: 10.13206/j.gjgS20061001
    [16]Meijing Liu, Shaoru Zeng, Shenggang Fan. Analysis and Design of Complex Steel Structure of High-Rising Sightseeing Tower[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 56-63. doi: 10.13206/j.gjgS20080502
    [17]Huimin Fu, Bin Ma, Longgui Bu, Yong Wang, Qing Zuo, Duomin Wang, Zhenyong Guo, Wenping Wu, Jianhua Li. Structural Design of Qinghe Station[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(5): 7-15. doi: 10.13206/j.gjgS20072302
    [18]Fei Yin, Lu Yang, Gang Shi, Xiaolin Li. OVERVIEW OF RESEARCH PROGRESS FOR SEISMIC BEHAVIOR OF HIGH STRENGTH STEEL STRUCTURES[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(3): 1-25. doi: 10.13206/j.gjgSE20010805
    [19]Yinquan Yu, Fengqi Zhu, Zhe Wang. Review of the Promotion and Application of Steel Structures in Construction[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(1): 59-69. doi: 10.13206/j.gjgSE19112602
    [20]Ruifeng Li, Xinhua Liu, Guojun Xu. Design Theory Method of Staggered Truss Structure and Research on Assembled Integration Technology Application[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(11): 55-64. doi: 10.13206/j.gjgS20042601
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.7 %FULLTEXT: 16.7 %META: 73.5 %META: 73.5 %PDF: 9.9 %PDF: 9.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 24.7 %其他: 24.7 %其他: 0.6 %其他: 0.6 %上海: 0.6 %上海: 0.6 %北京: 11.1 %北京: 11.1 %南京: 1.2 %南京: 1.2 %嘉兴: 0.6 %嘉兴: 0.6 %天津: 1.9 %天津: 1.9 %宣城: 1.9 %宣城: 1.9 %常州: 0.6 %常州: 0.6 %常德: 0.6 %常德: 0.6 %广州: 0.6 %广州: 0.6 %廊坊: 0.6 %廊坊: 0.6 %张家口: 0.6 %张家口: 0.6 %成都: 1.2 %成都: 1.2 %扬州: 3.1 %扬州: 3.1 %昆明: 0.6 %昆明: 0.6 %晋城: 0.6 %晋城: 0.6 %杭州: 0.6 %杭州: 0.6 %武汉: 0.6 %武汉: 0.6 %沈阳: 0.6 %沈阳: 0.6 %洛阳: 1.9 %洛阳: 1.9 %济南: 0.6 %济南: 0.6 %深圳: 3.1 %深圳: 3.1 %湘潭: 0.6 %湘潭: 0.6 %漯河: 4.3 %漯河: 4.3 %福州: 0.6 %福州: 0.6 %芒廷维尤: 18.5 %芒廷维尤: 18.5 %芝加哥: 2.5 %芝加哥: 2.5 %菏泽: 1.2 %菏泽: 1.2 %西宁: 3.7 %西宁: 3.7 %西雅图: 1.2 %西雅图: 1.2 %许昌: 0.6 %许昌: 0.6 %贵阳: 0.6 %贵阳: 0.6 %运城: 1.2 %运城: 1.2 %重庆: 0.6 %重庆: 0.6 %长沙: 4.3 %长沙: 4.3 %青岛: 1.2 %青岛: 1.2 %其他其他上海北京南京嘉兴天津宣城常州常德广州廊坊张家口成都扬州昆明晋城杭州武汉沈阳洛阳济南深圳湘潭漯河福州芒廷维尤芝加哥菏泽西宁西雅图许昌贵阳运城重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (530) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return