Citation: | Fei Yin, Lu Yang, Gang Shi, Xiaolin Li. OVERVIEW OF RESEARCH PROGRESS FOR SEISMIC BEHAVIOR OF HIGH STRENGTH STEEL STRUCTURES[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(3): 1-25. doi: 10.13206/j.gjgSE20010805 |
Shi G, Ban H Y, Shi Y J, et al. Overview of research progress for high strength steel structures[J]. Engineering Mechanics, 2013, 30(1):1-13. (in Chinese)
|
施刚, 班慧勇, 石永久,等. 高强度钢材钢结构研究进展综述[J]. 工程力学, 2013, 30(1):1-13.
|
Li G Q, Wang Y B, Chen S W. The art of application of high-strength steel structures for buildings in seismic zones[J]. Advanced Steel Construction, 2015, 11(4):492-506.
|
Li G Q, Wang Y B, Chen S W. The art of application of highstrength steel structures for buildings in seismic zones[J]. Advanced Steel Construction, 2015, 11(4):492-506.
|
Wang Y Q, Lin Y, Zhou H, et al. Progress in the brittle fracture and fatigue of high strength steels and their welds[J]. Progress in Steel Building Structures, 2012, 14(5):21-28. (in Chinese)
|
王元清, 林云, 周晖,等. 高强度钢材及其焊缝脆性断裂与疲劳性能的研究进展[J]. 建筑钢结构进展, 2012, 14(5):21-28.
|
Li G Q, Wang Y B, Chen S W, et al. State-of-the-art on research of high strength structural steels and key issues of using high strength steels in seismic structures[J]. Journal of Building Structures, 2013, 34(1):1-13. (in Chinese)
|
李国强, 王彦博, 陈素文,等. 高强度结构钢研究现状及其在抗震设防区应用问题[J]. 建筑结构学报, 2013, 34(1):1-13.
|
中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011-2010[S]. 北京:中国建筑工业出版社, 2010.
|
MOHURD. Code for seismic design of buildings:GB 50011-2010[S]. Beijing:China Building Industry Press, 2010. (in Chinese)
|
中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017-2017[S]. 北京:中国建筑工业出版社, 2018.
|
MOHURD. Code for design of steel structures:GB 50017-2017[S]. Beijing:China Building Industry Press, 2018. (in Chinese)
|
Ban H Y, Shi G, Shi Y J, et al. Research progress on the mechanical property of high strength structural steels[J]. Advanced Materials Research, 2011(250/251/252/253):640-648.
|
Ban H Y, Shi G, Shi Y J, et al. Research progress on the mechanical property of high strength structural steels[J]. Advanced Materials Research, 2011,250-253:640-648.
|
BSI. Eurocode 3 design of steel structures:part 1-12:additional rules for the extension of EN 1993 up to steel grades S700:BS EN 1993-1-12[S]. London:BSI, 2007.
|
BSI. Eurocode 3 Design of steel structures:part 1-12:additional rules for the extension of EN 1993 up to steel grades S700:BS EN 1993-1-12[S]. London:British Standards Institution, 2007.
|
China State Bureau of Technical Supervision. Steel conversion of elongation values-part 1:carbon and low alloy steels:GB/T 17600-1998[S]. Beijing:Standards Press of China, 1999. (in Chinese)
|
全国钢标准化技术委员会. 钢的伸长率换算:GB/T 17600-1998[S]. 北京:中国标准出版社, 1999.
|
BSI. Steel-conversion of elongation values-part 1:carbon and low alloy steels:BS EN ISO 2566-1:1999[S]. London:British Standards Institution, 1999.
|
BSI. Steel-Conversion of elongation values-part 1:carbon and low alloy steels:BS EN ISO 2566-1:1999[S]. London:British Standards Institution, 1999.
|
Ban H Y, Shi G. A review of research on high-strength steel structures[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2018, 171(8):625-641.
|
Ban H Y, Shi G. A review of research on high-strength steel structures[J]. Proceedings of the Institution of Civil EngineersStructures and Buildings, 2018, 171(8):625-641.
|
Langenberg P. Relation between design safety and Y/T ratio in application of welded high strength structural steels[C]//Proceedings of International Symposium on Applications of High Strength Steels in Modern Constructions and Bridges-Relationship of Design Specifications, Safety and Y/T Ratio. Beijing:China Steel Construction Society, 2008:28-46.
|
Langenberg P. Relation between design safety and Y/T ratio in application of welded high strength structural steels[C]//Proceedings of International Symposium on Applications of High Strength Steels in Modern Constructions and Bridges-Relationship of Design Specifications, Safety and Y/T Ratio. Beijing:China Steel Construction Society, 2008:28-46.
|
付俊岩, 东涛. 建筑和桥梁钢结构用钢屈强比问题的探讨[C]//现代建筑与桥梁用高强度钢材应用技术国际研讨会论文集. 北京:2008.
|
Fu J Y, Dong T. Discussion on yield ratio of steels for building and bridge steel structure[C]//International Symposium on Application Technology of High Strength Steel for Modern Buildings and Bridges. Beijing:2008. (in Chinese)
|
Javidan F, Heidarpour A, Zhao X L, et al. Fundamental behaviour of high strength and ultra-high strength steel subjected to low cycle structural damage[J]. Engineering Structures, 2017, 143:427-440.
|
Javidan F, Heidarpour A, Zhao X L, et al. Fundamental behaviour of high strength and ultra-high strength steel subjected to low cycle structural damage[J]. Engineering Structures, 2017, 143:427-440.
|
Ho H C, Liu X, Chung K F, et al. Hysteretic behaviour of high strength S690 steel materials under low cycle high strain tests[J]. Engineering Structures, 2018, 165:222-236.
|
Ho H C, Liu X, Chung K F, et al. Hysteretic behavior of high strength S690 steel materials under low cycle high strain tests[J]. Engineering Structures, 2018, 165:222-236.
|
陆建锋. 高强度钢材钢框架梁柱节点抗震性能试验研究[D]. 南京:东南大学, 2015.
|
Lu J F. Experimental research on the seismic performance of beam-to-column connections in high strength steel frame[D]. Nanjing:Southeast University, 2015.
|
Hu F X, Shi G, Shi Y J. Constitutive model for full-range elastoplastic behavior of structural steels with yield plateau:Formulation and implementation[J]. Engineering Structures, 2018, 171:1059-1070.
|
Hu F X, Shi G, Shi Y J. Constitutive model for full-range elasto-plastic behavior of structural steels with yield plateau:formulation and implementation[J]. Engineering Structures, 2018, 171:1059-1070.
|
Hu F X, Shi G, Shi Y J. Constitutive model for full-range elastoplastic behavior of structural steels with yield plateau:calibration and validation[J]. Engineering Structures, 2016, 118:210-227.
|
Hu F X, Shi G, Shi Y J. Constitutive model for full-range elasto-plastic behavior of structural steels with yield plateau:calibration and validation[J]. Engineering Structures, 2016, 118:210-227.
|
Hu F X, Shi G. Constitutive model for full-range cyclic behavior of high strength steels without yield plateau[J]. Construction & Building Materials, 2018, 162:596-607.
|
Hu F X, Shi G. Constitutive model for full-range cyclic behavior of high strength steels without yield plateau[J]. Construction & Building Materials, 2018, 162:596-607.
|
Shi G, Wang F, Dai G X, et al. Cyclic loading tests on high strength structural steel Q460C[J]. Journal of Southeast University (Natural Science Edition), 2011, 41(6):1259-1265. (in Chinese)
|
施刚, 王飞, 戴国欣, 等. Q460C高强度结构钢材循环加载试验研究[J]. 东南大学学报(自然科学版), 2011, 41(6):1259-1265.
|
Shi G, Wang F, Dai G X, et al. Experimental study of high strength structural steel Q460D under cyclic loading[J]. China Civil Engineering Journal, 2012, 45(7):48-55. (in Chinese)
|
施刚, 王飞, 戴国欣, 等. Q460D高强度结构钢材循环加载试验研究[J]. 土木工程学报, 2012, 45(7):48-55.
|
施刚, 王飞, 戴国欣, 等. Q460C高强度钢材焊缝连接循环加载试验研究[J]. 建筑结构学报, 2012,33(3):15-21.
|
Shi G, Wang F, Dai G X, et al. Cyclic loading test on welded connection of high strength steel Q460C[J]. Journal of Building Structures, 2012,33(3):15-21. (in Chinese)
|
Shi G, Wang M, Bai Y, et al. Experimental and modeling study of high-strength structural steel under cyclic loading[J]. Engineering Structures, 2012, 37(7):1-13.
|
Shi G, Wang M, Bai Y, et al. Experimental and modeling study of high-strength structural steel under cyclic loading[J]. Engineering Structures, 2012, 37(7):1-13.
|
Shi G, Wang M, Wang Y Q, et al. Cyclic behavior of 460 MPa high strength structural steel and welded connection under earthquake loading[J]. Advances in Structural Engineering, 2013, 16(3):451-466.
|
Shi G, Wang M, Wang Y Q, et al. Cyclic behavior of 460 MPa high strength structural steel and welded connection under earthquake loading[J]. Advances in Structural Engineering, 2013, 16(3):451-466.
|
Wang Y B, Li G Q, Cui W, et al. Experimental investigation and modeling of cyclic behavior of high strength steel[J]. Journal of Constructional Steel Research, 2015, 104:37-48.
|
Wang Y B, Li G Q, Cui W, et al. Experimental investigation and modeling of cyclic behavior of high strength steel[J]. Journal of Constructional Steel Research, 2015, 104:37-48.
|
Yin F, Yang L, Zong L, et al. Ultra-low cycle fatigue fracture of high-strength steel Q460C and its weld[J]. Journal of Materials in Civil Engineering, 2018, 30(11). DOI:10. 1061/(ASCE) MT. 1943-5533. 0002489.
|
Yin F, Yang L, Zong L, et al. Ultra-low cycle fatigue fracture of high-strength steel Q460C and its weld[J]. Journal of Materials in Civil Engineering, 2018, 30(11). DOI:10. 1061/(ASCE) MT. 1943-5533. 0002489.
|
Liu X Y. Investigations on fracture behavior of high strength steel materials and connections based on micromechanical models[D]. Beijing:Tsinghua University, 2015.
|
刘希月. 基于微观机理的高强钢结构材料与节点的断裂性能研究[D]. 北京:清华大学, 2015.
|
Lemaitré J, Chaboche J L. Mechanics of solid materials[M]. Cambridge, UK:Cambridge University Press, 1990.
|
Lemaitré J, Chaboche J L. Mechanics of solid materials[M]. Cambridge, UK:Cambridge University Press, 1990.
|
孙伟, 陈以一. 有限应变条件下滞回模式对Q460高强度结构钢的适用性[J]. 建筑结构学报, 2013, 34(3):93-99.
|
Sun W, Chen Y Y. Applicability of cyclic stress-strain relation with limited strain to Q460 high strength structural steel[J]. Journal of Building Structures, 2013, 34(3):93-99. (in Chinese)
|
Kanvinde A M, Deierlein G G. Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J]. Journal of Engineering Mechanics, 2007, 133(6):701-712.
|
Kanvinde A M, Deierlein G G. Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J]. Journal of Engineering Mechanics, 2007, 133(6):701-712.
|
Chen T. Extremely low cycle fatigue assessment of thick-walled steel piers[D]. Japan:Nagoya University, 2007.
|
Chen T. Extremely low cycle fatigue assessment of thick-walled steel piers[D]. Japan:Nagoya University, 2007.
|
Liao F F, Wang W, Chen Y Y. Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42(2):153-174.
|
Liao F F, Wang W, Chen Y Y. Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42(2):153-174.
|
Zhou H, Wang Y Q, Shi Y J, et al. Extremely low cycle fatigue prediction of steel beam-to-column connection by using a micromechanics based fracture model[J]. International Journal of Fatigue, 2013, 48:90-100.
|
Zhou H, Wang Y Q, Shi Y J, et al. Extremely low cycle fatigue prediction of steel beam-to-column connection by using a micro-mechanics based fracture model[J]. International Journal of Fatigue, 2013, 48:90-100.
|
Youssef N F G, Bonowitz D, Gross J I. A survey of steel moment-resisting frame buildings affected by the 1994 Northridge earthquake[R]. Gaithersburg, MD:NIST, 1995.
|
Youssef N F G, Bonowitz D, Gross J L. A survey of steel momentresisting frame buildings affected by the 1994 Northridge earthquake[R]. Gaithersburg, MD:NIST, 1995.
|
Horikawa K, Sakino Y. Review of damage in welded joints caused by the kobe earthquake[J]. Transactions of JWRI, 1995, 24(2):1-10.
|
Horikawa K, Sakino Y. Review of damage in welded joints caused by the kobe earthquake[J]. Transactions of JWRI, 1995, 24(2):1-10.
|
Maranian P. Reducing brittle and fatigue failures in steel structures[R]. Reston:American Society of Civil Engineers, 2010.
|
Maranian P. Reducing brittle and fatigue failures in steel structures[R]. Reston:American Society of Civil Engineers, 2010.
|
Uang C M, Bruneau M, Whittaker A S, et al. Seismic design of steel structures:the seismic design handbook[M]. 2nd ed. Dordrecht:Kluwer Academic Publishers, 2001.
|
Uang C M, Bruneau M, Whittaker A S, et al. Seismic design of steel structures-the seismic design handbook[M]. 2nd ed. Dordrecht, the Netherlands:Kluwer Academic Publishers, 2001.
|
张亚军. 10CrNiMo高强钢的低周疲劳特性[J]. 北京科技大学学报, 2011, 33(1):22-27.
|
Zhang Y J. Low cycle fatigue characteristic of 10CrNiMo high-strength steel[J]. Chinese Journal of Engineering, 2011, 33(1):22-27. (in Chinese)
|
曾庆祥, 何国求, 陈成澍. 一种高强度钢的低周疲劳特性及其微观机理的研究[J]. 西南交通大学学报, 1999, 34(2):190-195.
|
Zeng Q X, He G Q, Chen C P. A study on the low cycle fatigue characteristics and micro mechanisms of a high strength steel[J]. Journal of Southwest Jiaotong University, 1999, 34(2):190-195. (in Chinese)
|
闵杰, 盛光敏, 吴结才, 等. 热轧H型钢的高应变低周疲劳性能研究[J]. 钢铁研究学报, 2009, 21(11):40-44.
|
Men J, Sheng G M, Wu J C, et al. Analysis of high strain low cycle fatigue properties of hot rolled H-beam steel[J]. Journal of Iron and Steel Research, 2009, 21(11):40-44. (in Chinese)
|
Lin Z Y. Study on high strain and low cycle fatigue performance of hot rolled high strength H-beam[D]. Chongqing:Chongqing University, 2011.
|
林振邺. 热轧高强H型钢高应变低周疲劳性能研究[D]. 重庆:重庆大学, 2011.
|
Luo Y R, Wang Q Y. Advances in research on high strain low cycle fatigue(LCF) and extremely low cycle fatigue (ELCF) properties of anti-seismic building steel[J]. Sichuan Building Science, 2011, 37(3):139-145. (in Chinese)
|
罗云蓉, 王清远. 建筑用抗震钢高应变低周及超低周疲劳性能研究进展[J]. 四川建筑科学研究, 2011, 37(3):139-145.
|
罗云蓉, 王清远, 刘永杰, 等. Q235、Q345钢结构材料的低周疲劳性能[J]. 四川大学学报(工程科学版), 2012, 44(2):169-175.
|
Luo Y R, Wang Q Y, Liu Y J, et al. Low cycle fatigue properties of steel structure materials Q235 and Q345[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(2):169-175. (in Chinese)
|
Kiran R, Khandelwal K. A micromechanical cyclic void growth model for ultra-low cycle fatigue[J]. International Journal of Fatigue, 2015, 70:24-37.
|
Kiran R, Khandelwal K. A micromechanical cyclic void growth model for ultra-low cycle fatigue[J]. International Journal of Fatigue, 2015, 70:24-37.
|
Jia L J, Kuwamura H. Ductile fracture model for structural steel under cyclic large strain loading[J]. Journal of Constructional Steel Research, 2015, 106:110-121.
|
Jia L J, Kuwamura H. Ductile fracture model for structural steel under cyclic large strain loading[J]. Journal of Constructional Steel Research, 2015, 106:110-121.
|
Jia L J, Ikai T, Shinohara K, et al. Ductile crack initiation and propagation of structural steels under cyclic combined shear and normal stress loading[J]. Construction & Building Materials, 2016, 112:69-83.
|
Jia L J, Ikai T, Shinohara K, et al. Ductile crack initiation and propagation of structural steels under cyclic combined shear and normal stress loading[J]. Construction & Building Materials, 2016, 112:69-83.
|
Liu Y, Jia L J, Ge H, et al. Ductile-fatigue transition fracture mode of welded T-joints under quasi-static cyclic large plastic strain loading[J]. Engineering Fracture Mechanics, 2017, 176:38-60.
|
Liu Y, Jia L J, Ge H, et al. Ductile-fatigue transition fracture mode of welded T-joints under quasi-static cyclic large plastic strain loading[J]. Engineering Fracture Mechanics, 2017, 176:38-60.
|
Lin X, Okazaki T, Chung Y L, et al. Flexural performance of bolted built-up columns constructed of H-SA700 steel[J]. Journal of Constructional Steel Research, 2013, 82(2):48-58.
|
Lin X, Okazaki T, Chung Y L, et al. Flexural performance of bolted built-up columns constructed of H-SA700 steel[J]. Journal of Constructional Steel Research, 2013, 82(2):48-58. 2
|
Shi G, Deng C S, Ban H Y, et al. Experimental study on hysteretic behavior of high strength steel box-section columns[J]. Journal of Building Structures, 2012, 33(3):1-7. (in Chinese)
|
施刚, 邓椿森, 班慧勇,等. 高强度钢材箱形柱滞回性能试验研究[J]. 建筑结构学报, 2012, 33(3):1-7.
|
Shi G, Wang J, Bai Y, et al. Experimental study on seismic behavior of 460 MPa high strength steel box-section columns[J]. Advances in Structural Engineering, 2014, 17(7):1045-1059.
|
Shi G, Wang J, Bai Y, et al. Experimental study on seismic behavior of 460 MPa high strength steel box-section columns[J]. Advances in Structural Engineering, 2014, 17(7):1045-1059.
|
施刚, 邓椿森, 班慧勇,等. Q460高强度钢材工形压弯构件抗震性能的试验研究[J]. 土木工程学报, 2012(10):53-61.
|
Shi G, Deng C S, Ban H Y, et al. Experimental study on the seismic behavior of Q460 high strength steel I-columns[J]. China Civil Engineering Journal, 2012(10):53-61. (in Chinese)
|
Wang J, Shi G, Shi Y J. Experimental research on behavior of 460 MPa high strength steel I-section columns under cyclic loading[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(4):611-622.
|
Wang J, Shi G, Shi Y J. Experimental research on behavior of 460 MPa high strength steel I-section columns under cyclic loading[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(4):611-622.
|
李国强, 王彦博, 陈素文,等. Q460C高强度结构钢焊接H形和箱形截面柱低周反复加载试验研究[J]. 建筑结构学报, 2013, 34(3):80-86.
|
Li G Q, Wang Y B, Chen S W, et al. Experimental study of Q460C high strength steel welded H-section and box-section columns under cyclic loading[J]. Journal of Building Structures, 2013, 34(3):80-86. (in Chinese)
|
Li G Q, Wang Y B, Chen S W, et al. Finite element analysis on hysteretic behavior of Q460C high strength steel box-section and H-section columns[J]. Journal of Building Structures, 2013, 34(3):87-92. (in Chinese)
|
李国强, 王彦博, 陈素文,等. Q460C高强度钢柱滞回性能有限元分析[J]. 建筑结构学报, 2013, 34(3):87-92.
|
Wang Y B, Li G Q, Cui W, et al. Seismic behavior of high strength steel welded beam-column members[J]. Journal of Constructional Steel Research, 2014, 102(11):245-255.
|
Wang Y B, Li G Q, Cui W, et al. Seismic behavior of high strength steel welded beam-column members[J]. Journal of Constructional Steel Research, 2014, 102(11):245-255.
|
Zhou F, Chen Y Y, Tong L W, et al. Experimental investigation on mechanical behavior of high strength steel welded Hsection members[J]. Industrial Construction, 2012, 42(1):32-36. (in Chinese)
|
周锋, 陈以一, 童乐为,等. 高强度钢材焊接H形构件受力性能的试验研究[J]. 工业建筑, 2012, 42(1):32-36.
|
Chen S W, Lu Z L, Li G Q, et al. Cyclic loading tests of Q690D high strength steel welded columns[J]. Journal of Building Structures, 2014, 35(12):97-103. (in Chinese)
|
陈素文, 陆志立, 李国强,等. Q690D高强钢焊接截面柱低周反复加载试验研究[J]. 建筑结构学报, 2014, 35(12):97-103.
|
Chen S W, Chen X, Wang Y B, et al. Experimental and numerical investigations of Q690D H-section columns under lateral cyclic loading[J]. Journal of Constructional Steel Research, 2016, 121:268-281.
|
Chen S W, Chen X, Wang Y B, et al. Experimental and numerical investigations of Q690D H-section columns under lateral cyclic loading[J]. Journal of Constructional Steel Research, 2016, 121:268-281.
|
Wang Y, Kang L. Seismic performance of Q690 high strength steel welded H-section columns[J]. Procedia Engineering, 2017, 210:286-296.
|
Wang Y, Kang L. Seismic performance of Q690 high strength steel welded H-section columns[J]. Procedia Engineering, 2017, 210:286-296.
|
Schillo D I N, Feldmann D I M. Experiments on the rotational capacity of beams made of high-strength steel[J]. Steel Construction:Design and Research, 2018, 11(1):42-48.
|
Schillo D I N, Feldmann D I M. Experiments on the rotational capacity of beams made of high-strength steel[J]. Steel Construction:Design and Research, 2018, 11(1):42-48.
|
Shakil S, Wei L, Puttonen J. Response of high-strength steel beam and single-storey frame in fire:numerical simulation[J]. Journal of Constructional Steel Research, 2018, 148:551-561.
|
Shakil S, Wei L, Puttonen J. Response of high-strength steel beam and single-storey frame in fire:numerical simulation[J]. Journal of Constructional Steel Research, 2018, 148:551-561.
|
Wang W, Zhang L, He P. A numerical investigation on restrained high strength Q460 steel beams including creep effect[J]. International Journal of Steel Structures, 2018,18(5):1497-1507.
|
Wang W, Zhang L, He P. A numerical investigation on restrained high strength Q460 steel beams including creep effect[J]. International Journal of Steel Structures, 2018, 18(5):1497-1507.
|
Wang W, Zhou H, Zhou Y, et al. A simplified approach for fire resistance design of high strength Q460 steel beams subjected to non-uniform temperature distribution[J]. Fire Technology, 2018, 54(2):437-460.
|
Wang W, Zhou H, Zhou Y, et al. A simplified approach for fire resistance design of high strength Q460 steel beams subjected to non-uniform temperature distribution[J]. Fire Technology, 2018, 54(2):437-460.
|
段兰, 张亮, 王春生,等. 高强度工字钢梁抗弯性能试验[J]. 长安大学学报(自然科学版), 2012, 32(6):52-58.
|
Duan L, Zhang L, Wang C S, et al. Flexural behavior test of high strength steel I-beam[J]. Journal of Chang'an University (Natural Science Edition), 2012, 32(6):52-58. (in Chinese)
|
段兰, 王春生, 王世超,等. 高强度工字钢梁腹板抗剪性能试验[J]. 中国公路学报, 2017, 30(3):65-71.
|
Duan L, Wang C S, Wang S C, et al. Web shear behavior test for high strength I steel girders[J]. China Journal of Highway and Transport, 2017, 30(3):65-71. (in Chinese)
|
Suzuki T, Ogawa T, Ikarashi K, et al. Effects of the yield ratio on the behavior and the energy absorbing capacity of high strength steel beams under the repeated load[J]. Journal of Structural & Construction Engineering, 1996, 61(135):135-144. (in Japanese)
|
Suzuki T, Ogawa T, Ikarashi K, et al. Effects of the yield ratio on the behavior and the energy absorbing capacity of high strength steel beams under the repeated load[J]. Journal of Structural & Construction Engineering, 1996, 61(135):135-144.
|
Green P S. The inelastic behavior of flexural members fabricated from high performance steel Doctoral Thesis[D]. Bethlehem, Pennsylvania, US:Lehigh University, 2000.
|
Green P S. The inelastic behavior of flexural members fabricated from high performance steel doctoral thesis[D]. Bethlehem, Pennsylvania, US:Lehigh University, 2000.
|
Sun F F, Yang F, Li G Q, et al. Experimental research on high-strength hot-rolled H-cantilever beam under cyclic loading[J]. Industrial Construction, 2012, 42(1):46-50. (in Chinese)
|
孙飞飞, 杨芳, 李国强,等. 高强热轧H型钢悬臂梁低周反复试验研究[J]. 工业建筑, 2012, 42(1):46-50.
|
Herion S, Hrabowski J, Ummenhofer T. Low-cycle fatigue behaviour of high-strength steel butt welds[C]//Proceedings of the Twenty-First (2011) International Offshore and Polar Engineering Conference. Hawaii:USA, 2011:282-287.
|
Herion S, Hrabowski J, Ummenhofer T. Low-cycle fatigue behaviour of high-strength steel butt welds[C]//Proceedings of the Twenty-First (2011) International Offshore and Polar Engineering Conference. Hawaii:USA, 2011:282-287.
|
尹飞. 强震下高强度结构钢材焊接节点的高应变低周疲劳断裂研究[D]. 北京:北京工业大学, 2018.
|
Yin F. Study on high-strain low-cycle fatigue fracture of high strength steel welded connections under strong earthquakes[D]. Beijing:Beijing University of Technology, 2018.
|
Kuwamura H, Suzuki T. Low-cycle fatigue resistance of welded joints of high-strength steel under earthquake loading[C]//Proc. of the 10th World Conf. on Earthquake Engineering. Madrid:Spain, 1992:2851-2856.
|
Kuwamura H, Suzuki T. Low-cycle fatigue resistance of welded joints of high-strength steel under earthquake loading[C]//Proc. of the 10th World Conf. on Earthquake Engineering. Madrid:Spain, 1992:2851-2856.
|
Huang Y H, Onishi Y, Hayashi K. Inelastic behavior of high strength steels with weld connections under cyclic gradient stress[C]//Proc. of the 11th World Conference on Earthquake Engineering. Oxford:Elsevier Science Ltd, 1996.
|
Huang Y H, Onishi Y, Hayashi K. Inelastic behavior of high strength steels with weld connections under cyclic gradient stress[C]//Proc. of the 11th World Conference on Earthquake Engineering. Oxford:Elsevier Science Ltd, 1996.
|
Oh S H, Park H Y. A study to enhance the deformation capacity of beam-to-column connections using high strength steel having high yield ratio[J]. International Journal of Steel Structures, 2016, 16(1):73-89.
|
Oh S H, Park H Y. A study to enhance the deformation capacity of beam-to-column connections using high strength steel having high yield ratio[J]. International Journal of Steel Structures, 2016, 16(1):73-89.
|
孙飞飞, 孙密, 李国强,等. Q690高强钢端板连接梁柱节点抗震性能试验研究[J]. 建筑结构学报, 2014, 35(4):116-124.
|
Sun F F, Sun M, Li G Q, et al. Experimental study on seismic behavior of high strength steel beam-to-column end-plate connections[J]. Journal of Building Structures, 2014, 35(4):116-124. (in Chinese)
|
Liu X Y, Wang Y Q, Shi Y J, et al. Experimental study on low-cycle fatigue fracture behavior of high strength steel beamto-column connection[J]. Journal of Building Structures, 2018, 39(2):28-36. (in Chinese)
|
刘希月, 王元清, 石永久,等. 高强度钢框架梁柱节点低周疲劳断裂性能试验研究[J]. 建筑结构学报, 2018, 39(2):28-36.
|
胡阳阳, 林旭川, 吴开来,等. 带"保险丝"连接板的焊接高强钢梁柱节点抗震性能试验研究[J]. 工程力学, 2017, 34(增刊1):143-148.
|
Hu Y Y, Lin X C, Wu K L, et al. Cyclic loading test on high strength steel beam-to-column connections with damage control fuses[J]. Engineering Mechanics, 2017, 34(S1):143-148. (in Chinese)
|
Hu F X, Shi G, Shi Y J. Fracture behavior of beam-column connections using high strength steel based on fracture mechanics[J]. Engineering Mechanics, 2015, 32(4):41-46. (in Chinese)
|
胡方鑫, 施刚, 石永久. 基于断裂力学的高强度钢材梁柱节点受力性能分析[J]. 工程力学, 2015, 32(4):41-46.
|
陈学森. 高强度钢材板式加强型梁柱节点抗震性能及设计方法[D]. 北京:清华大学, 2018.
|
Chen X S. Seismic behavior and design method of high strength steel plate reinforced beam-to-column connections[D]. Beijing:Tsinghua University, 2018.
|
王磊, 班慧勇, 石永久, 等. 基于微观断裂机理的高强钢框架梁柱节点抗震性能有限元分析[J]. 工程力学, 2018, 35(11):68-78.
|
Wang L, Ban H Y, Shi Y J, et al. Finite element analysis on aseismic behavior of high-strength steel beam-to-column connections in steel frames based on micromechanics of fracture[J]. Engineering Mechanics, 2018, 35(11):68-78. (in Chinese)
|
Matsui C, Mitani I. Inelastic behavior of high strength steel frames subjected to constant vertical and alternating horizontal loads[C]//Proceedings of 6th World Conference on Earthquake Engineering. New Delhi:India, 1977:3169-3174.
|
Matsui C, Mitani I. Inelastic behavior of high strength steel frames subjected to constant vertical and alternating horizontal loads[C]//Proc. 6th World Conference on Earthquake Engineering (WCEE). New Delhi:India, 1977:3169-3174.
|
Tenchini A, D'aniello M, Rebelo C, et al. Seismic performance of dual-steel moment resisting frames[J]. Journal of Constructional Steel Research, 2014,101:437-454.
|
Tenchini A, D'aniello M, Rebelo C, et al. High strength steel in chevron concentrically braced frames designed according to Eurocode 8[J]. Engineering Structures, 2016,124:167-185.
|
Dubina D, Stratan A, Dinu F. Dual high-strength steel eccentrically braced frames with removable links[J]. Earthquake Engineering & Structural Dynamics, 2010, 37(15):1703-1720.
|
Dubina D, Stratan A, Vulcu C, et al. High strength steel in seismic resistant building frames[J]. Steel Construction:Design and Research, 2015, 8(3):173-177.
|
Nakai M, Nakamura Y, Maeda S, et al. Proposal for damage-free design method of steel structure utilizing high strength steel under great earthquake[J]. Journal of Structural & Construction Engineering, AIJ, 2011,76(666):1443-1451.
|
Shinsai N, Suita K, Koetaka Y. Mechanical performance and seismic response of knee brace damper structure of H-SA700 high strength steel members made by undermatched welds[J]. Journal of Structural & Construction Engineering, AIJ, 2012,77(682):1959-1968.
|
Nakai M, Tsuda K, Mase S, et al. Performance verification through full-scale static loading tests for a structural system using high strength stee[J]. Journal of Structural & Construction Engineering, AIJ, 2013,78(687):1007-1016.
|
Takeuchi T, Ohyama T, Ishihara T. Seismic performance of highstrength steel frames with energy dissipation braces-part 1:cumulative cyclic deformation capacity of high-strength steel frames with energy dissipation braces[J]. Journal of Structural & Construction Engineering, AIJ, 2010,75(655):1671-1679.
|
Takeuchi T, Ohyama T, Matsui R. Seismic performance of highstrength steel frames with energy dissipation braces-part 2:cumulative deformation capacity evaluation of high-strength steel beam ends subjected to cyclic bending moment[J]. Journal of Structural & Construction Engineering, AIJ, 2011,76(661):695-702.
|
Hu F X, Shi G, Shi Y J. Experimental study on seismic behavior of high strength steel frames:global response[J]. Engineering Structures, 2017, 131:163-179.
|
段留省, 苏明周, 焦培培,等. 高强钢组合Y形偏心支撑钢框架抗震性能试验研究[J]. 建筑结构学报, 2014, 35(12):64-71.
|
连鸣, 苏明周, 李慎,等. Y形偏心支撑高强钢框架结构抗震性能振动台试验研究[J]. 建筑结构学报, 2015, 36(8):16-24.
|
李慎, 田建勃, 马辉,等. 基于性能设计的高强钢组合K形偏心支撑钢框架抗震性能研究[J]. 建筑结构, 2015(6):71-79.
|
郭艳, 苏明周, 胡长明. 高强钢组合偏心支撑框架抗震性能研究[J]. 地震工程学报, 2016, 38(2):176-184.
|
Duan L S, Su M Z, Li H. Experimental study on seismic behavior of high strength steel composite K-type eccentrically braced frames[J]. Advanced Materials Research, 2014, 838-841(7):559-563.
|
Wang F, Su M, Hong M, et al. Cyclic behaviour of Y-shaped eccentrically braced frames fabricated with high-strength steel composite[J]. Journal of Constructional Steel Research, 2016, 120(2):176-187.
|
Tian X, Su M, Lian M, et al. Seismic behavior of K-shaped eccentrically braced frames with high-strength steel:shaking table testing and FEM analysis[J]. Journal of Constructional Steel Research, 2018, 143:250-263.
|