Volume 35 Issue 1
May  2020
Turn off MathJax
Article Contents
Xuhong Zhou. Research Progress on Cold-Formed Steel Structural Framing[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(1): 1-19. doi: 10.13206/j.gjgSE20010804
Citation: Xuhong Zhou. Research Progress on Cold-Formed Steel Structural Framing[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(1): 1-19. doi: 10.13206/j.gjgSE20010804

Research Progress on Cold-Formed Steel Structural Framing

doi: 10.13206/j.gjgSE20010804
  • Received Date: 2019-12-26
  • Rev Recd Date: 2020-01-17
  • Cold-formed steel (CFS) structural framing system widely used in North America and Europe is also applicable in China due to low weight, high strength, environmental friendliness, and fast fabrication. In the last three decades, numerous researches have been carried out to investigate the structural performance of CFS framing buildings. The author started to study the CFS structures in the 1980s and is one of the earliest advocators of applying CFS structures in residential buildings. This paper summarizes the research progress on CFS framing buildings, including local buckling and distortional buckling of CFS columns, compression and flexural behavior of build-up columns and beams, diaphragms, vibration performance of composite floor systems, strength and stiffness of shear walls, the seismic behavior of whole CFS structure, and the fire resistance of build-up columns. Lastly, future research for advancing the knowledge relating to structural behavior of CFS structures is suggested.
  • loading
  • American Iron and Steel Institute. North American specification for the design of cold-formed steel structural members:AISI S100-16[S]. Washington, D.C.:American Iron and Steel Institute, 2016.
    SAI Global Limited. Australian/New Zealand standard:cold-formed steel structures:AS/NZS 4600:2005[S]. Sydney:SAI Global Limited, 2005.
    European Committee for Standarization. Eurocode 3:Design of steel structures:part 1-3:general rules:supplementary rules for cold-formed members and sheeting:BS EN 1993-1-3[S]. Brussels, Belgium:European Committee for Standarization,2006.
    American Iron and Steel Institute. North American standard for cold-formed steel framing-general provisions:AISI S200-12[S]. Washington, D.C.:American Iron and Steel Institute, 2012.
    American Iron and Steel Institute. Standard for cold-formed steel framing-prescriptive method for one and two family dwellings:AISI S230-2015[S]. Washington, D.C.:American Iron and Steel Institute, 2015.
    International Code Council. The international building code:IBC 2018[S]. USA:International Code Council, 2018.
    American Iron and Steel Institute. North American standard for seismic design of cold-formed steel structural systems:AISI S400[S]. Washington, D.C.:American Iron and Steel Institute, 2015.
    Ministry of Construction of the PRC. Technical code of cold-formed thin-wall steel structures:GB 50018-2002[S]. Beijing:China Planning Press, 2002. (in Chinese)
    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for sow-rise sold-formed thin-walled steel buildings:JGJ 227-2011[S]. Beijing:China Building Industry Press, 2011. (in Chinese)
    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical stand for cold-formed thin-walled steel multi-storey residential buildings:JGJ/T 421-2018[S]. Beijing:China Building Industry Press, 2018. (in Chinese)
    Kármán T V, Sechler E E, Donnell L H. The strength of thin plates in compression[J]. Transactions of the American Society of Mechanical Engineers, 1932, 54:53-57.
    Winter G. Strength of thin steel compression flanges[J]. Transactions of the American Society of Civil Engineers, 1947, 112(1):527-576.
    Kwon Y B, Hancock G J. Tests of cold-formed channels with local and distortional buckling[J]. Journal of Structural Engineering, 1992, 118(7):1786-1803.
    Hancock G J, Kwon Y B, Bernard E S. Strength design curves for thin-walled sections undergoing distortional buckling[J]. Journal of Constructional Steel Research, 1994, 31(2/3):169-186.
    Schafer B W, Peköz T. Direct strength prediction of cold-formed steel members using numerical elastic buckling solutions[Z]. St. Louis, Missouri:1998:69-76.
    Schafer B W. Local, distortional, and euler buckling of thin-walled columns[J]. Journal of Structural Engineering, 2002, 128(3):289-299.
    Yao X Y, Guo Y L, Li Y Q. Effective width method for distortional buckling design of cold-formed lipped channel sections[J]. Thin-Walled Structures, 2016, 109:344-351.
    Zhou X H, Wang S J. A semi-energy method of buckling analysis of edge-stiffened plates[J]. Journal of Hunan University, 1991, 18(2):11-18. (in Chinese)
    Zhou X H. Elastic buckling solution of edge-stiffened plates[J]. Journal of Hunan University, 1995, 22(6):105-108. (in Chinese)
    Zhou X H, Mo T, Zhou Q S, et al. Study on the plate assembly effects on edge stiffened plate elements in design approach of effective width to thickness ratio[J]. Journal of Building Structures, 2002, 23(3):37-43. (in Chinese)
    Zhou X H, Wang S J. Stability theory and its applications of thin-walled member[M]. Beijing:Science Press, 2009. (in Chinese)
    Zhou X H, Liu Z K, He Z Q. General distortional buckling formulae for both fixed-ended and pinned-ended C-section columns[J]. Thin-Walled Structures, 2015, 94(9):603-611.
    Lau S C W, Hancock G J. Distortional buckling formulas for channel columns[J]. Journal of Structural Engineering, 1987, 113(5):1063-1078.
    Schafer B W. Cold-formed steel behavior and design:analytical and numerical modeling of elements and members with longitudinal stiffeners[D]. New York:Cornell University, 1997.
    He Z Q, Zhou X H. Strength design curves and an effective width formula for cold-formed steel columns with distortional buckling[J]. Thin-Walled Structures, 2014, 79(6):62-70.
    Young B, Silvestre N, Camotim D. Cold-formed steel lipped channel columns influenced by local-distortional interaction:strength and DSM design[J]. Journal of Structural Engineering (ASCE), 2013, 139(6):1059-1074.
    He Z Q, Zhou X H, Liu Z K, et al. Post-buckling behaviour and DSM design of web-stiffened lipped channel columns with distortional and local mode interaction[J]. Thin-Walled Structures, 2014, 84(11):189-203.
    Zhou X H, Chen M. Experimental investigation and finite element analysis of web-stiffened cold-formed lipped channel columns with batten sheets[J]. Thin-Walled Structures, 2018, 125:38-50.
    Wang S J. Torsional-flexural buckling of open thin-walled columns with battens[J]. Thin-Walled Structures, 1985, 3(4):323-341.
    Wang S J. Torsional-flexural buckling of partially closed and open thin-walled beam-columns[J]. Journal of Building Structures, 1993, 14(5):59-68. (in Chinese)
    Li Y L, Li Y Q, Wang S K, et al. Ultimate load-carrying capacity of cold-formed thin-walled columns with built-up box and I section under axial compression[J]. Thin-Walled Structures, 2014, 79:202-217.
    Kenneth G P. An investigation of the effects of fastener spacing in build-up cold-formed steel compression members[D]. Halifax:University of Dalhousie, 2003.
    Young B, Chen J. Design of cold-formed steel built-up closed sections with intermediate stiffeners[J]. Journal of Structural Engineering, 2008, 134:727-737.
    Reyes W, Guzmán A. Evaluation of the slenderness ratio in built-up cold-formed box sections[J]. Journal of Constructional Steel Research, 2011, 67:929-935.
    Lu Y, Zhou T H, Li W C, et al. Experimental investigation and a novel direct strength method for cold-formed built-up I-section columns[J]. Thin-Walled Structures, 2017, 112:125-139.
    Whittle J, Ramseyer C. Buckling capacities of axially loaded, cold-formed, built-up C-channels[J]. Thin-Walled Structures, 2009, 47:190-201.
    Vijayanand S, Anbarasu M. Effect of spacers on ultimate strength and behavior of cold-formed steel built-up columns[J]. Procedia Engineering, 2017, 173:1423-1430.
    Roy K, Mohammadjani C, Lim J B P. Experimental and numerical investigation into the behaviour of face-to-face built-up cold-formed steel channel sections under compression[J]. Thin-Walled Structures, 2019, 134:291-309.
    Fratamico D C, Torabian S, Zhao X, et al. Experiments on the global buckling and collapse of built-up cold-formed steel columns[J]. Journal of Constructional Steel Research, 2018, 144:65-80.
    Georgieva I, Schueremans L, Vandewalle L, et al. Design of built-up cold-formed steel columns according to the direct strength method[J]. Procedia Engineering, 2012, 40(1):119-124.
    Liao F F, Wu H H, Wang R Z, et al. Compression test and analysis of multi-limbs built-up cold-formed steel stub columns[J]. Journal of Constructional Steel Research, 2017, 128:405-415.
    Li F T. Research on axially compressed behavior of double-limbs box section built-up cold-formed steel columns[D]. Xi'an:Chang'an University, 2015. (in Chinese)
    Yuan T T. Experimental and theoretical research on closed-section multi-limbs built-up cold-formed steel columns under axial compression[D]. Xi'an:Chang'an University, 2010. (in Chinese)
    Aerzhaguli. Study on axial compression bearing capacity of multi-limbs built-up cold-formed steel stub columns[D]. Xi'an:Chang'an University, 2011. (in Chinese)
    Craveiro H D, Rodrigues J P C, Laím L. Buckling resistance of axially loaded cold-formed steel columns[J]. Thin-Walled Structures, 2016, 106:358-375.
    Serrette R L. Performance of edge-loaded cold-formed steel built-up box beams[J]. Practice Periodical on Structural Design and Construction, 2004, 9(3):170-174.
    Magnucka-Blandzi E. Effective shaping of cold-formed thin-walled channel beams with double-box flanges in pure bending[J]. Thin-Walled Structures, 2011, 49(1):121-128.
    Li Y L, Li Y Q, Shen Z Y. Investigation on flexural strength of cold-formed thin-walled steel beams with built-up box section[J]. Thin-Walled Structures, 2016, 107:66-79.
    Wang L P, Young B. Behaviour and design of cold-formed steel built-up section beams with different screw arrangements[J]. Thin-Walled Structures, 2018, 131:16-32.
    Xu L, Sultana P, Zhou X H. Flexural strength of cold-formed steel built-up box sections[J]. Thin-Walled Structures, 2009, 47(6/7):807-815.
    Zhou X H, Shi Y. Flexural strength evaluation for cold-formed steel lip-reinforced built-up I-beams[J]. Advances in Structural Engineering, 2011, 14(4):597-612.
    Shi Y, Zhou X H, Gao T T, et al. Research on flexural capacity of cold-formed steel double limbs built-up box beams[J]. Journal of Building Structures, 2015, 36(11):20-28. (in Chinese)
    Zhou X H, Guan Y, Gao T T, et al. Study on flexural capacity of cold-formed steel double-limb built-up I-shape beams[J]. China Civil Engineering Journal, 2016, 49(8):16-27. (in Chinese)
    Lange J,Naujoks B. Behaviour of cold-formed steel shear walls under horizontal and vertical loads[J]. Thin-Walled Structures, 2006, 44:1214-1222.
    DaBreo J, Balh N, Ong-Tone C, et al. Steel sheathed cold-formed steel framed shear walls subjected to lateral and gravity loading[J]. Thin-Walled Structures, 2014, 74:232-245.
    Ye J H, Wang X X, Jia H Y, et al. Cyclic performance of cold-formed steel shear walls sheathed with double-layer wallboards on both sides[J]. Thin-Walled Structures, 2015, 92:146-159.
    Tian H W, Li Y Q, Zhou Y. Theoretical analysis and testing of steel frame with cold-formed steel shear walls with steel sheathing[J]. Journal of Structural Engineering, 2018, 144(7). Doi:10.1061/(ASCE)ST. 1943-541X.0002057.
    Fiorino L, Della Corte G, Landolfo R. Experimental tests on typical screw connections for cold-formed steel housing[J]. Engineering Structures, 2007, 29:1761-1773.
    Serrette R,Peyton D. Strength of screw connections in cold-formed steel construction[J]. Journal of Structural Engineering, 2009, 135(8):951-958.
    Zhou X H, Shi Y, Zhou T H, et al. Study on shear resistance of cold-formed steel stud walls in residential structures[J]. Journal of Building Structures, 2006, 27(3):42-47. (in Chinese)
    Zhou X H, He Y J, Shi Y, et al. Experiment and FE analysis on shear resistance of cold-formed steel stud assembled wall in residential structure[J]. Advanced Steel Construction, 2010, 6(3):914-925.
    Zhou X H, Shi Y, Zhou T H, et al. Experimental study of the shear resistance of cold-formed steel stud walls[J]. China Civil Engineering Journal, 2010, 43(5):38-44. (in Chinese)
    Zhou X H, Yuan X L, Shi Y, et al. Research on nonlinear pinching hysteresis model of sheathed cold-formed thin-walled steel stud walls[J]. Engineering Mechanics, 2012, 29(6):224-233. (in Chinese)
    Kyvelou P, Gardner L, Nethercot D A. Testing and analysis of composite cold-formed steel-wood-based flooring systems[J]. Journal of Structural Engineering, 2017, 143(11). Doi.10.1061/(ASCE)ST.1943-541X.0001885.
    Zhou X H, Li Z, Wang R C, et al. Study on load-carrying capacity of the cold-formed steel joists-OSB composite floor[J]. China Civil Engineering Journal, 2013, 46(9):1-11. (in Chinese)
    Shi Y, Zhou X H, Song K, et al. Study on flexural stiffness of cold-formed thin-walled steel joists-OSB composite floors[J]. Journal of Architecture and Civil Engineering, 2015, 32(6):50-57. (in Chinese)
    Zhou X H, Shi Y, Xu L, et al. A simplified method to evaluate the flexural capacity of lightweight cold-formed steel floor system with oriented strand board subfloor[J]. Thin-Walled Structures, 2019,134:40-51.
    Hanaor A. Tests of composite beams with cold-formed sections[J]. Journal of Constructional Steel Research, 2000, 54(2):245-264.
    Lakkavalli B S, Liu Y. Experimental study of composite cold-formed steel C-section floor joists[J]. Journal of Constructional Steel Research, 2006, 62(10):995-1006.
    Irwan J M, Hanizah A H, Azmib I, et al. Large-scale test of symmetric cold-formed steel (CFS)-concrete composite beams with BTTST enhancement[J]. Journal of Constructional Steel Research, 2011, 67(4):720-726.
    Hsu C T T, Punurai S, Punurai W, et al. New composite beams having cold-formed steel joists and concrete slab[J]. Engineering Structures, 2014, 71:187-200.
    Majdi Y, Hsu C T T, Zarei M. Finite element analysis of new composite floors having cold-formed steel and concrete slab[J]. Engineering Structures, 2014,77:65-83.
    Alhajri T M, Tahir M M, Azimi M, et al. Behavior of pre-cast U-shaped composite beam integrating cold-formed steel with ferro-cement slab[J]. Thin-Walled Structures, 2016, 102:18-29.
    Zhou X H, Jia Z W. Experimental study on flexural capacity of cold-formed steel joists and concrete composite floor[J]. Journal of Building Structures, 2010,31(7):13-22. (in Chinese)
    Shi Y, Zhou X H, Guan Y, et al. Experimental study on flexural performance of C-shaped cold-formed thin-walled steel-gypsum based self-leveling mortar composite beam[J]. Journal of Building Structures, 2018, 39(9):112-119. (in Chinese)
    NAHB Research Center. Innovative residential floor construction:horizontal diaphragm values for cold-formed steel framing[R].U. S. Department of Housing and Urban Development, Upper Marlboro, MD, 1999.
    Nikolaidou V, Latreille P, Lignos D G, et al. Seismic performance characterization of wood-sheathed and cold-formed steel framed floor and roof diaphragm structures[J]. Journal of Structural Engineering, 2018, 144(2). Doi: 10.1061/(ASCE)ST.1943-541X.0001962.
    Xu L. Floor vibration in lightweight cold-formed steel framing[J]. Advances in Structural Engineering, 2011, 14(4):659-672.
    Zhang S G, Xu L, Qin J W. Vibration of lightweight steel floor systems with occupants:modeling, formulation and dynamic properties[J]. Engineering Structures, 2017, 147:652-665.
    Zhang S G, Xu L. Determination of equivalent rigidities of cold-formed steel floor systems for vibration analysis, part I:theory[J]. Thin-Walled Structures, 2018, 132:25-35.
    Zhang S G, Xu L, Yu C. Determination of equivalent rigidities of cold-formed steel floor systems for vibration analysis, part II:evaluation of the fundamental frequency[J]. Thin-Walled Structures, 2018, 132:1-15.
    Zhou X H, Gao T T, Shi Y. Experimental study on static deflection and vibration behavior of cold-formed steel OSB composite floor[J]. Engineering Mechanics, 2014, 31(5):211-217. (in Chinese)
    Jia Z W, Zhou X H. Study on fundamental frequency of cold-formed steel concrete floor[J]. Engineering Mechanics, 2010, 49(3):469-473. (in Chinese)
    Zhou X H, He Y J, Jia Z W, et al. Experimental study on vibration behavior of cold-formed steel concrete composite floor[J]. Advanced Steel Construction, 2011, 7(3):302-312.
    Guan Y, Zhou X H, Yao X M, et al. Vibration of cold-formed steel floors with a steel form deck and gypsum-based self-leveling underlayment[J]. Advances in Structural Engineering, 2019, 22:2741-2754.
    Li Y Q, Shen Z Y, Yao X Y, et al. Experimental investigation and design method research on low-rise cold-formed thin-walled steel framing buildings[J]. Journal of Structural Engineering, 2013, 139(5):818-836.
    Peterman K D, Stehman M J J, Buonopane S G, et al. Seismic performance of full-scale cold-formed steel buildings[C]//Tenth U.S. National Conference on Earthquake Engineering. Anchorage, Alaska:2014.
    Huang Z G, Su M, He B K, et al. Shaking table test on seismic behaviors of three-story cold-formed thin-walled steel residential buildings[J]. China Civil Engineering Journal, 2011, 44(2):72-81. (in Chinese)
    Shi Y, Zhou X H, Liu L P, et al. Shaking table test on prefabricated light steel structure popular science building[J]. Journal of Building Structures, 2019, 40(2):98-107. (in Chinese)
    Shi Y, Zhou X H, Nie S F, et al. Seismic dynamic response analysis for cold-formed steel framing system of mid-rise residential building[J]. Earthquake Resistant Engineering and Retrofitting, 2011, 33(5):7-26. (in Chinese)
    Zhou X H, Guan Y, Shi Y. Seismic performance analysis of multi-story cold-formed thin-walled steel structure residential building[J]. Progress in Steel Building Structures, 2017, 19(6):10-15. (in Chinese)
    Chen J, Young B. Experimental investigation of cold-formed steel material at elevated temperatures[J]. Thin-Walled Structures, 2007, 45:96-110.
    Gunalan S, Heva Y B, Mahendran M. Local buckling studies of cold-formed steel compression members at elevated temperatures[J]. Journal of Constructional Steel Research, 2015, 108:31-45.
    Feng M, Wang Y C, Davies J M. Structural behavior of cold-formed thin-walled short steel channel columns at elevated temperatures, part 1:experiments[J]. Thin-Walled Structures, 2003, 41:543-70.
    Craveiro H D, Rodrigues J P C, Laím L. Cold-formed steel columns made with open cross-sections subjected to fire[J]. Thin-Walled Structures, 2014, 85:1-14.
    Ye J H, Feng R Q, Chen W, et al. Behavior of cold-formed steel wall stud with sheathing subjected to compression[J]. Journal of Constructional Steel Research, 2015, 116(1):79-91.
    Yang J J, Wang W Y. Shi Y, et al. Experimental study on fire resistance of cold-formed steel built-up box columns[J]. Thin-Walled Structures, 2020, 147. Doi: org/10.1016/j.tws.2019.106564.
    European Committee for Standardization. Eurocode 3:Design of steel structures, part1-2:general rules, structural fire design:EN 1993-1.2:2005[S]. Brussels, Belgium:European Committee for Standardizaiton, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (834) PDF downloads(132) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return