Jianguo Nie. Application of Steel-Concrete Composite Structure in Ocean Engineering[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(1): 20-33. doi: 10.13206/j.gjgSE19112601
Citation: Jianguo Nie. Application of Steel-Concrete Composite Structure in Ocean Engineering[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(1): 20-33. doi: 10.13206/j.gjgSE19112601

Application of Steel-Concrete Composite Structure in Ocean Engineering

doi: 10.13206/j.gjgSE19112601
  • Received Date: 2019-08-29
  • Rev Recd Date: 2019-10-30
  • Ocean engineering and construction are promising foundations for the implementation of China’s maritime power strategy. Compared to land engineering, ocean engineering requires more complex and demanding construction environments and conditions, which pose new challenges to structural engineering. Steel-concrete composite structures have broad application prospects in ocean engineering with significant performance advantages and comprehensive economic benefits as they successfully combine the respective advantages of steel and concrete. This paper summarizes the research work of composite structure research team of Tsinghua University with respect to the development and application of three types of composite structures in ocean engineering: cross-sea bridges, submarine immersed tunnels, and floating offshore platforms. Four new structural systems are proposed, including a long-span continuous beam bridge with integrated anti-crack technology, a double-steel-plate-concrete composite bridge tower suitable for cross-sea multi-tower cable-stayed bridges, a compartment steel-concrete-steel composite structure suitable for submarine immersed tunnels, and steel-concrete composite very large floating structure (VLFS).The key load-transferring mechanisms, mechanical performance, and design methods of the new structures are studied in depth, which are applied to the design of large-scale engineering projects such as the Dalian Bay Bridge, Nanjing No.5 Yangtze River Bridge, Shenzhen-Zhongshan Link, and offshore VLFS.Research and practice demonstrate that the new composite structural system has significant performance advantages and achieves satisfactory comprehensive economic benefits, thus providing new ideas and choices for ocean engineering construction and effectively promoting the application of steel-concrete composite structures in ocean engineering.
  • Nie J G. Steel-concrete composite bridge structure[M]. Beijing:China Communications Press, 2011. (in Chinese)
    Nie J G, Wang J J, Gou S K, et al. Technological development and engineering applications of novel steel-concrete composite structures[J]. Frontiers of Structural and Civil Engineering, 2019, 13(1):1-14.
    Liu X D. Overall Design and Technical Challenges of Hong Kong-Zhuhai-Macao Bridge[C]//Proceedings of the 15th China Marine (Ashore) Engineering Symposium (Part 1). 2011.
    Sun J Y, Deng S H, Zhang J. Technical Measures for Concrete Crack Resistance of Cross-Sea Bridges[J]. Journal of Railway Science and Engineering, 2007, 4(1):58-62. (in Chinese)
    Liu W H, Chang D B. Study on the hogging moment area optimization design of composite beams[J]. Journal of Jilin Jianzhu University, 2008, 25(3):1-3. (in Chinese)
    Guo F Q, Yu Z W. Calculation of crack resistance of prestressed steel-concrete continuous composite beams[J]. Steel Structure, 2003, 18(2):21-24. (in Chinese)
    Zhao J, Zheng Z J. Stress analysis of group shear studs of long span steel-concrete composite beam bridge[J]. Bridge Construction, 2013, 43(3):48-53. (in Chinese)
    Li Z S. Research on structural system stiffness of multi-tower long-span cable-stayed bridge based on static and dynamic characteristics[D]. Beijing:Beijing Jiaotong University, 2014. (in Chinese)
    Guest J K, Draper P, Billington D P. Santiago Calatrava's Alamillo bridge and the idea of the structural engineer as artist[J]. Journal of Bridge Engineering, 2013, 18(10):936-945.
    Virlogeux M. Normandie bridge design and construction[J]. Structures & Buildings, 1993, 104(3):357-360.
    Wu L L, Nie J G. Key parameters analysis of non-tensile prestressing technology for steel-concrete continuous composite beams[J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(4):156-162.
    Nie J G, Tao M X, Nie X, et al. New anti-pulling and non-shear-resistant connection technology and its application[J]. Chinese Journal of Civil Engineering, 2015(4):7-14. (in Chinese)
    Nie J G, Li Y X, Tao M X, et al. Uplift-restricted and slip permitted T-shape connectors[J]. Journal of Bridge Engineering, 2014, 20(4).Doi: 10.1061/(ASCE)BE.1943-5592.0000660.
    Nie J G, Li Y X, Tao M X, et al. Experimental research on uplift performance of a new type of uplift restricted-slip free connector[J]. China Journal of Highway and Transport, 2014, 27(4):38-45. (in Chinese)
    Han S W, Tao M X, Nie J G, et al. Experimental and numerical investigation on steel concrete composite beam with uplift-restricted and slip-permitted screw-type connectors[C]//Proceedings of fourteenth international symposium on structural engineering. Beijing:2016.
    Tomlinson M, Tomlinson A, Chapman M L, et al. Shell composite construction for shallow draft immersed tube tunnels[C]//Proceedings of the ICE international conference on immersed tube tunnel techniques. Manchester (UK):Thomas Telford, 1989.
    Narayanan R, Roberts T M, Naji F J. Design guide for steel-concrete-steel sandwich construction, Volume 1:general principles and rules for basic elements[M]. Ascot, Berkshire, UK:The Steel Construction Institute, 1994.
    Bowerman H, Chapman J C. Bi-Steel steel-concrete-steel sandwich construction[C]//Composite Construction in Steel and Concrete IV Conference. 2014:656-667.
    Xie M, Chapman J C. Developments in sandwich construction[J]. Journal of Constructional Steel Research, 2006, 62(11):1123-1133.
    Bowerman H G, Gough M S, King C M. Bi-Steel design and construction guide[M]. Scunthorpe:British Steel Ltd, 1999.
    Matsuishi M, Iwata S. Study on the strength of sandwich-type composite structures composed of steel plate and concrete (4th report)[J]. Transactions of the Japan Institute of Shipbuilding, 1988,164:395-405.
    Kimura H, Kojima K, Moritaka H. On the deformation of a submerged box during offshore construction[C]//Proceedings of the Tunnel Engineering Conference.2002.
    Japan Society of Civil Engineers. Steel concrete sandwich structural design guidelines (draft)[M]. Tokyo:Concrete Library, 1992.
    Tamai S, Ikeda Y, Abe T, et al. Application of high-fluidity concrete to a submerged box suspended in the sea:Naha submerged box (No.3 box) Construction[J]. Concrete Engineering, 2003,41:60-65.
    Yoshimoto Y, Yoshida H, Tamai S, et al. Development and construction of filled concrete in shin-wakado sink tunnel[C]//Proceedings of Civil Engineering Technology Symposium. 2006:99-106.
    Song S Y, Nie J G, Xu G P, et al. Development and application of steel-concrete-steel composite structure in immersed tunnel[J]. Chinese Journal of Civil Engineering, 2019(4):109-120. (in Chinese)
    Guo Y T, Tao M X, Nie X, et al. The bending capacity of steel-concrete-steel composite structures considering local buckling and casting imperfection[J]. Journal of Structural Engineering, 2019, 145(10). Doi: 10.1061/(ASCE)ST.1943-541X.0002385.
    Guo Y T, Nie X, Tao M X, et al. Selected series method on buckling design of stiffened steel-concrete composite plates[J]. Journal of Constructional Steel Research, 2019, 161:296-308.
    Guo Y T, Tao M X, Nie X, et al. Experimental and theoretical studies on the shear resistance of steel-concrete-steel composite structures with bidirectional steel webs[J]. Journal of Structural Engineering, 2018, 144(10). Doi: 10.1061/(ASCE)ST.1943-541X.0002182.
    Isobe E. Research and development of Mega-Float[C]//Proceedings of the 3rd International Workshop on Very Large Floating Structures, 1999:7-13.
    Remmers G, Zueck R, Palo P, et al. Mobile offshore base[C]//The Eighth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 1998.
    Wang X Q, Tao M X. Structural design and analysis of a new type of very large steel-concrete composite box floating platform at sea[J]. Engineering Mechanics, 2019, 36(11):147-157. (in Chinese)
    Wu Y. Hydroelasticity of floating bodies[D]. London:University of Brunel, 1984.
    Babarit A, Delhommeau G. Theoretical and numerical aspects of the open source BEM solver NEMOH[C]//11th European Wave and Tidal Energy Conference (EWTEC2015). 2015.
    Price W G, Wu Y S. Hydroelasticity of marine structures[C]//Proceedings of the XVIth International Congress of Theoretical and Applied Mechanics. 1985:311-337.
    Kagemoto H, Yue D. Interactions among multiple three-dimensional bodies in water waves:an exact algebraic method[J]. Journal of Fluid Mechanics, 1986, 166:189-209. Doi: 10.1017/S0022112086000101.
    Yago K, Endo H. On the hydoroelastic response of box-shaped floating structure with shallow draft[J]. Journal of the Society of Naval Architects of Japan, 1996, 180:341-352.
  • Relative Articles

    [1]Yunlong Xu, Faxing Ding, Fei Lyu, Zhicheng Pan, Liang Luo, Guoan Yin, Ming Chen, Zhiwu Yu. Analysis on Seismic Performance of ConcreteFilled Steel Tubular Columns-Composite Beam Frame Structural System Under MultiDimensional Earthquake[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(12): 27-38. doi: 10.13206/j.gjgS23080501
    [2]Faxing Ding, Yunlong Xu, Liping Wang, Fei Lyu, Linli Duan, Zhiwu Yu. State of Art and Future Insights of the Seismic Performance of Steel-Concrete Composite Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(12): 1-26. doi: 10.13206/j.gjgS23062902
    [3]Zhenfeng Huang, Sumei Zhang, Lanhui Guo, Jie Chen. Performance of Dovetail Profiled Steel Concrete Sandwich Composite Members Subjected to Axial Compression[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(4): 11-19. doi: 10.13206/j.gjgS21010601
    [4]Faxing Ding, Zhicheng Pan, Liang Luo, Ping Xiang, Zhiwu Yu. Ultimate Seismic Resistance and Strong Column Construction Measure of Steel-Concrete Composite Frame Structures Under Horizontal Earthquake[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 26-37. doi: 10.13206/j.gjgS20090301
    [5]Dong Liu, Yongjiu Shi, Xianglin Yu, Chengliang Tu. Parametric Analyses on Lateral Performance About Modular Composite Shear Wall with Double Steel Plates and Infill Concrete[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(12): 43-49. doi: 10.13206/j.gjgS20120701
    [6]Weiyi Zhao, Lin Wang, Quanquan Guo, Zepeng Gao. RESEARCH ADVANCES OF IMPACT RESISTANCE OF STEEL-CONCRETE COMPOSITE STRUCTURES[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(3): 26-36. doi: 10.13206/j.gjgSE19121501
  • Cited by

    Periodical cited type(17)

    1. 王佐才,张德林,辛宇. 基于Kriging模型与FORM的钢板组合梁桥结构优化设计. 重庆交通大学学报(自然科学版). 2024(08): 1-9 .
    2. 常鸿飞,高宇航,左文康,李照伟,严晓宇. GFRP管-灌浆料修复锈蚀钢管节点受压性能研究. 工程力学. 2023(02): 145-156 .
    3. 周炼成,周建华,刘育初,赵海波,贺绍华. 开孔板连接件抗剪承载力计算方法研究. 广东土木与建筑. 2023(07): 68-72 .
    4. 戚菁菁,吴记东,蒋丽忠,曹华,谢祖巍,吕伟荣,黄志. 带约束构造的栓钉连接件组合板界面抗剪性能试验研究. 铁道科学与工程学报. 2023(07): 2629-2642 .
    5. 黄振宇,赵晓龙,张维,严旭. 带孔开槽板咬合式连接件钢板-混凝土组合梁抗弯及抗剪性能研究. 建筑钢结构进展. 2023(10): 1-15 .
    6. 任志刚,郑志国,李旗,苏鑫,李培鹏. 矿物掺量对海水海砂ECC抗氯离子渗透性能的影响. 武汉理工大学学报. 2023(11): 50-56 .
    7. 蒋树屏,张丹丹,胡学兵,曹鹏. 钢壳混凝土管节高温破坏机制及防火保护技术研究. 铁道科学与工程学报. 2023(12): 4655-4666 .
    8. 赵国臻. 钢壳沉管混凝土界面脱空检测足尺模型中冲击映像法的应用. 中国高新科技. 2023(22): 36-38 .
    9. 宁晓冬,杨晨光. 水下无现浇封底混凝土钢-混组合吊箱围堰施工技术. 桥梁建设. 2022(01): 132-138 .
    10. 贺绍华,关沛东,廖家成,李丽娟. 复合型开孔板连接件抗剪性能试验. 中国公路学报. 2022(05): 73-83 .
    11. 李明坤. 钢-混凝土组合结构节点连接关键技术研究. 科技资讯. 2022(24): 72-76 .
    12. 史天尧,陈星宇,张敏,刘倩. 水泥基材料中氯离子结合机理及其影响因素研究进展. 硅酸盐通报. 2021(01): 13-24 .
    13. 李斐然,张士红,袁波. 孟州黄河公路大桥组合梁整孔架设受力分析. 桥梁建设. 2021(02): 78-84 .
    14. 陈月平. 钢箱梁后注蓄热轻骨料混凝土及附加钢板空腔后注砂浆综合防火技术. 建筑结构. 2021(S2): 1216-1221 .
    15. 孙文火,刘梅梅,嵇廷. 基于管节变形控制的深中通道钢壳混凝土沉管无支撑仓格式浇筑顺序研究. 隧道建设(中英文). 2021(12): 2106-2112 .
    16. 翁泽松,陈星,苏恒强. 装配式新型组合钢板剪力墙的创新实践. 广东土木与建筑. 2020(07): 17-22 .
    17. 洪开荣,冯欢欢. 中国公路隧道近10年的发展趋势与思考. 中国公路学报. 2020(12): 62-76 .

    Other cited types(20)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.0 %FULLTEXT: 19.0 %META: 78.8 %META: 78.8 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.2 %其他: 19.2 %其他: 1.9 %其他: 1.9 %Arlington: 0.0 %Arlington: 0.0 %Austell: 0.0 %Austell: 0.0 %Bass Hill: 0.1 %Bass Hill: 0.1 %Bryansk: 0.1 %Bryansk: 0.1 %Canton: 0.2 %Canton: 0.2 %Carrboro: 0.0 %Carrboro: 0.0 %Central District: 0.2 %Central District: 0.2 %China: 1.2 %China: 1.2 %Clemmons: 0.0 %Clemmons: 0.0 %Doylestown: 0.0 %Doylestown: 0.0 %Indianapolis: 0.0 %Indianapolis: 0.0 %Kingsland: 0.0 %Kingsland: 0.0 %Koesan: 1.9 %Koesan: 1.9 %Lithonia: 0.3 %Lithonia: 0.3 %Malvern: 0.2 %Malvern: 0.2 %Norman: 0.2 %Norman: 0.2 %Poland: 0.3 %Poland: 0.3 %Reserved: 0.0 %Reserved: 0.0 %Rochester: 0.4 %Rochester: 0.4 %San Lorenzo: 0.0 %San Lorenzo: 0.0 %United States: 0.3 %United States: 0.3 %Valencia: 0.1 %Valencia: 0.1 %Wixom: 0.0 %Wixom: 0.0 %[]: 0.4 %[]: 0.4 %三门峡: 0.8 %三门峡: 0.8 %上海: 2.2 %上海: 2.2 %东京: 0.1 %东京: 0.1 %东莞: 0.4 %东莞: 0.4 %中山: 0.3 %中山: 0.3 %九江: 0.0 %九江: 0.0 %代顿: 0.0 %代顿: 0.0 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %休斯敦: 0.2 %休斯敦: 0.2 %休斯顿: 0.0 %休斯顿: 0.0 %伦敦: 0.1 %伦敦: 0.1 %佛罗里达州: 0.0 %佛罗里达州: 0.0 %兰州: 0.0 %兰州: 0.0 %内江: 0.0 %内江: 0.0 %加利福尼亚州: 0.5 %加利福尼亚州: 0.5 %勿加泗: 0.1 %勿加泗: 0.1 %北京: 7.8 %北京: 7.8 %匹兹堡: 0.2 %匹兹堡: 0.2 %十堰: 0.0 %十堰: 0.0 %华沙: 0.0 %华沙: 0.0 %南京: 1.3 %南京: 1.3 %南宁: 0.2 %南宁: 0.2 %南昌: 0.0 %南昌: 0.0 %南通: 0.1 %南通: 0.1 %厦门: 0.3 %厦门: 0.3 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.0 %呼和浩特: 0.0 %咸阳: 0.0 %咸阳: 0.0 %哈伦: 0.0 %哈伦: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %哥德堡: 0.4 %哥德堡: 0.4 %圣保罗: 0.1 %圣保罗: 0.1 %圣地亚哥: 0.1 %圣地亚哥: 0.1 %圣安东尼奥: 0.1 %圣安东尼奥: 0.1 %圣路易斯: 0.1 %圣路易斯: 0.1 %坦佩: 0.1 %坦佩: 0.1 %基秦拿: 0.1 %基秦拿: 0.1 %塔拉哈西: 0.0 %塔拉哈西: 0.0 %墨尔本: 0.1 %墨尔本: 0.1 %士嘉堡: 0.2 %士嘉堡: 0.2 %大同: 0.0 %大同: 0.0 %大庆: 0.1 %大庆: 0.1 %大连: 0.7 %大连: 0.7 %天津: 0.3 %天津: 0.3 %太原: 0.0 %太原: 0.0 %奥古斯塔: 0.0 %奥古斯塔: 0.0 %孝感: 0.4 %孝感: 0.4 %孟菲斯: 0.0 %孟菲斯: 0.0 %安康: 0.0 %安康: 0.0 %安條克: 0.1 %安條克: 0.1 %安特里姆和纽敦阿比区: 0.0 %安特里姆和纽敦阿比区: 0.0 %安阳: 0.0 %安阳: 0.0 %宣城: 0.4 %宣城: 0.4 %密蘇里城: 1.2 %密蘇里城: 1.2 %巴黎: 0.2 %巴黎: 0.2 %布劳利: 0.0 %布劳利: 0.0 %布雷登顿: 0.1 %布雷登顿: 0.1 %布鲁克林区: 0.1 %布鲁克林区: 0.1 %常州: 0.1 %常州: 0.1 %平顶山: 0.0 %平顶山: 0.0 %广州: 2.5 %广州: 2.5 %廊坊: 0.0 %廊坊: 0.0 %延安: 0.1 %延安: 0.1 %张家口: 0.2 %张家口: 0.2 %徐州: 0.2 %徐州: 0.2 %悉尼: 0.3 %悉尼: 0.3 %成都: 0.2 %成都: 0.2 %扬州: 0.2 %扬州: 0.2 %拉斯维加斯: 0.2 %拉斯维加斯: 0.2 %拉雷多: 0.0 %拉雷多: 0.0 %揭阳: 0.1 %揭阳: 0.1 %斯帕坦堡: 0.1 %斯帕坦堡: 0.1 %新加坡: 0.1 %新加坡: 0.1 %旧金山: 0.0 %旧金山: 0.0 %昆明: 0.4 %昆明: 0.4 %晋城: 0.2 %晋城: 0.2 %曼彻斯特: 0.0 %曼彻斯特: 0.0 %朗伯德: 0.0 %朗伯德: 0.0 %杭州: 0.5 %杭州: 0.5 %林肯: 0.1 %林肯: 0.1 %查塔努加: 0.1 %查塔努加: 0.1 %柳州: 0.1 %柳州: 0.1 %格兰特县: 0.3 %格兰特县: 0.3 %格林维尔: 0.1 %格林维尔: 0.1 %格里利: 0.1 %格里利: 0.1 %格雷特纳: 0.1 %格雷特纳: 0.1 %梅诺莫尼: 0.0 %梅诺莫尼: 0.0 %森尼韦尔: 0.1 %森尼韦尔: 0.1 %榆林: 0.1 %榆林: 0.1 %武威: 0.1 %武威: 0.1 %武汉: 1.2 %武汉: 1.2 %河源: 0.0 %河源: 0.0 %法兰克福: 0.1 %法兰克福: 0.1 %泽西: 0.0 %泽西: 0.0 %洛杉矶: 0.0 %洛杉矶: 0.0 %济南: 0.1 %济南: 0.1 %济宁: 0.3 %济宁: 0.3 %海口: 0.1 %海口: 0.1 %深圳: 1.5 %深圳: 1.5 %温州: 0.1 %温州: 0.1 %渭南: 0.0 %渭南: 0.0 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.7 %湘潭: 0.7 %漯河: 0.8 %漯河: 0.8 %潍坊: 0.0 %潍坊: 0.0 %烟台: 0.2 %烟台: 0.2 %焦作: 0.0 %焦作: 0.0 %珠海: 0.2 %珠海: 0.2 %琼海: 0.0 %琼海: 0.0 %瑟普赖斯: 0.0 %瑟普赖斯: 0.0 %石家庄: 0.0 %石家庄: 0.0 %福州: 1.6 %福州: 1.6 %科泽科德县: 0.1 %科泽科德县: 0.1 %科隆: 0.1 %科隆: 0.1 %纽瓦克: 0.1 %纽瓦克: 0.1 %纽约: 0.5 %纽约: 0.5 %绍兴: 0.0 %绍兴: 0.0 %芒廷维尤: 15.6 %芒廷维尤: 15.6 %芝加哥: 3.4 %芝加哥: 3.4 %苏州: 0.0 %苏州: 0.0 %荆门: 0.1 %荆门: 0.1 %萨默维尔: 0.0 %萨默维尔: 0.0 %蚌埠: 0.1 %蚌埠: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 10.4 %西宁: 10.4 %西安: 0.1 %西安: 0.1 %西雅图: 0.6 %西雅图: 0.6 %贝尔维尔: 0.1 %贝尔维尔: 0.1 %贵阳: 0.0 %贵阳: 0.0 %费利蒙: 0.0 %费利蒙: 0.0 %达特茅斯: 0.1 %达特茅斯: 0.1 %迈阿密: 0.0 %迈阿密: 0.0 %运城: 0.3 %运城: 0.3 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 2.0 %郑州: 2.0 %都伯林: 0.0 %都伯林: 0.0 %重庆: 0.6 %重庆: 0.6 %金华: 0.0 %金华: 0.0 %长沙: 0.3 %长沙: 0.3 %阜阳: 0.0 %阜阳: 0.0 %阳泉: 0.4 %阳泉: 0.4 %青岛: 0.8 %青岛: 0.8 %韦科: 0.0 %韦科: 0.0 %香港: 0.5 %香港: 0.5 %马尼拉: 0.1 %马尼拉: 0.1 %黄石: 0.0 %黄石: 0.0 %黑尔福德: 0.1 %黑尔福德: 0.1 %黑格斯敦: 0.0 %黑格斯敦: 0.0 %其他其他ArlingtonAustellBass HillBryanskCantonCarrboroCentral DistrictChinaClemmonsDoylestownIndianapolisKingslandKoesanLithoniaMalvernNormanPolandReservedRochesterSan LorenzoUnited StatesValenciaWixom[]三门峡上海东京东莞中山九江代顿伊利诺伊州休斯敦休斯顿伦敦佛罗里达州兰州内江加利福尼亚州勿加泗北京匹兹堡十堰华沙南京南宁南昌南通厦门合肥呼和浩特咸阳哈伦哈尔滨哥伦布哥德堡圣保罗圣地亚哥圣安东尼奥圣路易斯坦佩基秦拿塔拉哈西墨尔本士嘉堡大同大庆大连天津太原奥古斯塔孝感孟菲斯安康安條克安特里姆和纽敦阿比区安阳宣城密蘇里城巴黎布劳利布雷登顿布鲁克林区常州平顶山广州廊坊延安张家口徐州悉尼成都扬州拉斯维加斯拉雷多揭阳斯帕坦堡新加坡旧金山昆明晋城曼彻斯特朗伯德杭州林肯查塔努加柳州格兰特县格林维尔格里利格雷特纳梅诺莫尼森尼韦尔榆林武威武汉河源法兰克福泽西洛杉矶济南济宁海口深圳温州渭南湖州湘潭漯河潍坊烟台焦作珠海琼海瑟普赖斯石家庄福州科泽科德县科隆纽瓦克纽约绍兴芒廷维尤芝加哥苏州荆门萨默维尔蚌埠衢州西宁西安西雅图贝尔维尔贵阳费利蒙达特茅斯迈阿密运城连云港邯郸郑州都伯林重庆金华长沙阜阳阳泉青岛韦科香港马尼拉黄石黑尔福德黑格斯敦

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1784) PDF downloads(68) Cited by(37)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return