Citation: | Jianguo Nie. Application of Steel-Concrete Composite Structure in Ocean Engineering[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(1): 20-33. doi: 10.13206/j.gjgSE19112601 |
Nie J G. Steel-concrete composite bridge structure[M]. Beijing:China Communications Press, 2011. (in Chinese)
|
Nie J G, Wang J J, Gou S K, et al. Technological development and engineering applications of novel steel-concrete composite structures[J]. Frontiers of Structural and Civil Engineering, 2019, 13(1):1-14.
|
Liu X D. Overall Design and Technical Challenges of Hong Kong-Zhuhai-Macao Bridge[C]//Proceedings of the 15th China Marine (Ashore) Engineering Symposium (Part 1). 2011.
|
Sun J Y, Deng S H, Zhang J. Technical Measures for Concrete Crack Resistance of Cross-Sea Bridges[J]. Journal of Railway Science and Engineering, 2007, 4(1):58-62. (in Chinese)
|
Liu W H, Chang D B. Study on the hogging moment area optimization design of composite beams[J]. Journal of Jilin Jianzhu University, 2008, 25(3):1-3. (in Chinese)
|
Guo F Q, Yu Z W. Calculation of crack resistance of prestressed steel-concrete continuous composite beams[J]. Steel Structure, 2003, 18(2):21-24. (in Chinese)
|
Zhao J, Zheng Z J. Stress analysis of group shear studs of long span steel-concrete composite beam bridge[J]. Bridge Construction, 2013, 43(3):48-53. (in Chinese)
|
Li Z S. Research on structural system stiffness of multi-tower long-span cable-stayed bridge based on static and dynamic characteristics[D]. Beijing:Beijing Jiaotong University, 2014. (in Chinese)
|
Guest J K, Draper P, Billington D P. Santiago Calatrava's Alamillo bridge and the idea of the structural engineer as artist[J]. Journal of Bridge Engineering, 2013, 18(10):936-945.
|
Virlogeux M. Normandie bridge design and construction[J]. Structures & Buildings, 1993, 104(3):357-360.
|
Wu L L, Nie J G. Key parameters analysis of non-tensile prestressing technology for steel-concrete continuous composite beams[J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(4):156-162.
|
Nie J G, Tao M X, Nie X, et al. New anti-pulling and non-shear-resistant connection technology and its application[J]. Chinese Journal of Civil Engineering, 2015(4):7-14. (in Chinese)
|
Nie J G, Li Y X, Tao M X, et al. Uplift-restricted and slip permitted T-shape connectors[J]. Journal of Bridge Engineering, 2014, 20(4).Doi: 10.1061/(ASCE)BE.1943-5592.0000660.
|
Nie J G, Li Y X, Tao M X, et al. Experimental research on uplift performance of a new type of uplift restricted-slip free connector[J]. China Journal of Highway and Transport, 2014, 27(4):38-45. (in Chinese)
|
Han S W, Tao M X, Nie J G, et al. Experimental and numerical investigation on steel concrete composite beam with uplift-restricted and slip-permitted screw-type connectors[C]//Proceedings of fourteenth international symposium on structural engineering. Beijing:2016.
|
Tomlinson M, Tomlinson A, Chapman M L, et al. Shell composite construction for shallow draft immersed tube tunnels[C]//Proceedings of the ICE international conference on immersed tube tunnel techniques. Manchester (UK):Thomas Telford, 1989.
|
Narayanan R, Roberts T M, Naji F J. Design guide for steel-concrete-steel sandwich construction, Volume 1:general principles and rules for basic elements[M]. Ascot, Berkshire, UK:The Steel Construction Institute, 1994.
|
Bowerman H, Chapman J C. Bi-Steel steel-concrete-steel sandwich construction[C]//Composite Construction in Steel and Concrete IV Conference. 2014:656-667.
|
Xie M, Chapman J C. Developments in sandwich construction[J]. Journal of Constructional Steel Research, 2006, 62(11):1123-1133.
|
Bowerman H G, Gough M S, King C M. Bi-Steel design and construction guide[M]. Scunthorpe:British Steel Ltd, 1999.
|
Matsuishi M, Iwata S. Study on the strength of sandwich-type composite structures composed of steel plate and concrete (4th report)[J]. Transactions of the Japan Institute of Shipbuilding, 1988,164:395-405.
|
Kimura H, Kojima K, Moritaka H. On the deformation of a submerged box during offshore construction[C]//Proceedings of the Tunnel Engineering Conference.2002.
|
Japan Society of Civil Engineers. Steel concrete sandwich structural design guidelines (draft)[M]. Tokyo:Concrete Library, 1992.
|
Tamai S, Ikeda Y, Abe T, et al. Application of high-fluidity concrete to a submerged box suspended in the sea:Naha submerged box (No.3 box) Construction[J]. Concrete Engineering, 2003,41:60-65.
|
Yoshimoto Y, Yoshida H, Tamai S, et al. Development and construction of filled concrete in shin-wakado sink tunnel[C]//Proceedings of Civil Engineering Technology Symposium. 2006:99-106.
|
Song S Y, Nie J G, Xu G P, et al. Development and application of steel-concrete-steel composite structure in immersed tunnel[J]. Chinese Journal of Civil Engineering, 2019(4):109-120. (in Chinese)
|
Guo Y T, Tao M X, Nie X, et al. The bending capacity of steel-concrete-steel composite structures considering local buckling and casting imperfection[J]. Journal of Structural Engineering, 2019, 145(10). Doi: 10.1061/(ASCE)ST.1943-541X.0002385.
|
Guo Y T, Nie X, Tao M X, et al. Selected series method on buckling design of stiffened steel-concrete composite plates[J]. Journal of Constructional Steel Research, 2019, 161:296-308.
|
Guo Y T, Tao M X, Nie X, et al. Experimental and theoretical studies on the shear resistance of steel-concrete-steel composite structures with bidirectional steel webs[J]. Journal of Structural Engineering, 2018, 144(10). Doi: 10.1061/(ASCE)ST.1943-541X.0002182.
|
Isobe E. Research and development of Mega-Float[C]//Proceedings of the 3rd International Workshop on Very Large Floating Structures, 1999:7-13.
|
Remmers G, Zueck R, Palo P, et al. Mobile offshore base[C]//The Eighth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 1998.
|
Wang X Q, Tao M X. Structural design and analysis of a new type of very large steel-concrete composite box floating platform at sea[J]. Engineering Mechanics, 2019, 36(11):147-157. (in Chinese)
|
Wu Y. Hydroelasticity of floating bodies[D]. London:University of Brunel, 1984.
|
Babarit A, Delhommeau G. Theoretical and numerical aspects of the open source BEM solver NEMOH[C]//11th European Wave and Tidal Energy Conference (EWTEC2015). 2015.
|
Price W G, Wu Y S. Hydroelasticity of marine structures[C]//Proceedings of the XVIth International Congress of Theoretical and Applied Mechanics. 1985:311-337.
|
Kagemoto H, Yue D. Interactions among multiple three-dimensional bodies in water waves:an exact algebraic method[J]. Journal of Fluid Mechanics, 1986, 166:189-209. Doi: 10.1017/S0022112086000101.
|
Yago K, Endo H. On the hydoroelastic response of box-shaped floating structure with shallow draft[J]. Journal of the Society of Naval Architects of Japan, 1996, 180:341-352.
|