Volume 40 Issue 3
Mar.  2025
Turn off MathJax
Article Contents
Hongchao Wu, Jun Zhou, Zhenyu Huang, Yunquan Gao, Xianchuan Chen, Yuanfeng Zhao. Mechanical Properties of Modified Disassembled Modular Steel Containerized Barrack Housing Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(3): 39-48. doi: 10.13206/j.gjgS24080701
Citation: Hongchao Wu, Jun Zhou, Zhenyu Huang, Yunquan Gao, Xianchuan Chen, Yuanfeng Zhao. Mechanical Properties of Modified Disassembled Modular Steel Containerized Barrack Housing Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(3): 39-48. doi: 10.13206/j.gjgS24080701

Mechanical Properties of Modified Disassembled Modular Steel Containerized Barrack Housing Structures

doi: 10.13206/j.gjgS24080701
  • Received Date: 2024-08-07
    Available Online: 2025-06-07
  • Publish Date: 2025-03-25
  • Disassembled modular steel structures are characterized by high construction efficiency, economic and environmental benefits, flexibility, and reusability, and have widely used in scenarios such as temporary buildings, emergency response facilities, pandemic hospitals, and military engineering. However, their practical engineering applications face several challenges: 1) The contradiction between standardization and architectural diversity. 2) Unclear force transfer mechanisms exist in commonly used cold-formed open-section primary and secondary beams, with significant discrepancies between assumed and actual boundary conditions at connection joints. 3) Insufficient forms of joints between modular units and external hanging structures. To address these challenges, streamline modular specifications, and improve the mechanical properties, scalability, and application potential of disassembled modular steel structures in barrack construction, a new modular steel camp structure system has been developed based on traditional modular steel housing systems. This new system features efficient assembly and disassembly, flexible unit combinations, and enhanced floor insulation and compatibility with external hanging systems. The system comprises equilateral angle steel columns, equilateral corner fittings, locally reinforced cold-formed open-section primary and secondary beams, an insulated flooring system, an adjustable-height foundation, and external hanging structures. Lateral stiffness and vertical bearing capacity are key metrics for evaluating the mechanical properties of modular steel structures, and the new system introduces significant changes in these properties. Vertical and lateral loading tests were conducted to quantify the stress level at the connections between primary and secondary beams in the top and bottom frames, beam-end stresses, and external hanging structure stresses. Analysis revealed that under standard vertical loads, the overall deformation of the structure was well below standard requirements, demonstrating superior performance. Under lateral loads, the structure showed good lateral stiffness, with recommendations to control fabrication and installation tolerances for improved performance. The deformation characteristics of primary and secondary beams in the top and bottom frames and external structures were studied, complemented by experimental and finite element analysis to evaluate the stress behavior of external joints and foundation components. The results showed that simple hinge or rigid joint assumptions were insufficient to simulate the true mechanical responses of interfaces such as base-to-corner fittings, column-to-corner fittings, and corner-to-corner fittings in the modular steel structures. Refined simulations should account for interface separation characteristics. Additionally, extending secondary beams at least 40 mm into the web of top-frame primary beams could enhance the torsional resistance of primary beams and reduce stress levels at connection joints.
  • loading
  • [1]
    侯兆新,龚超,陈金林,等. 全预制装配模块化建筑及其结构设计策略[J]. 钢结构(中英文),2023,38(10):49- 58.
    [2]
    曹轲,翟思源,李国强,等. 柱承重模块化钢框架抗侧刚度足尺试验与理论计算方法研究[J]. 建筑结构学报,2021,42(增刊1):55- 61.
    [3]
    徐金鑫. 装配式钢结构箱式板房模块化建造技术在应急医院项目上的应用:以深圳市第三人民医院应急院区项目为例[J]. 中国工程咨询,2021(7):103- 107.
    [4]
    宗亮,王海鹏,丁阳,等. 模块化钢结构体系与整体计算方法研究进展[C]// 中国钢结构协会结构稳定与疲劳分会第16届(ISSF-2018)学术交流会暨教学研讨会论文集. 青岛:2018.
    [5]
    郭朋岗,林冰,齐虎,等. 箱型房屋研究进展及存在的问题[C]// 2020年工业建筑学术交流会论文集(下册). 北京:2020.
    [6]
    杨晓杰,陆烨,顾超,等. 新型多高层钢结构箱式模块建筑的设计[J]. 建筑钢结构进展,2016,18(5):41- 47.
    [7]
    陈红磊,王彦博,陈琛,等. 某模块化钢结构大学生公寓结构设计[J]. 钢结构(中英文),2019,34(8):46- 49.
    [8]
    Huang Z Y,Zhao X L,Deng W X,et al. Flexural performance of UHPFRC grouted SHS tube-sleeve connection for modular construction[J]. Thin-Walled Structures,2024,198,111653.
    [9]
    Chen Z H,Liu J D,Yu Y J. Experimental study on interior connections in modular steel buildings[J]. Engineering Structures,2017,147:625- 638.
    [10]
    田广丰. 可拆装式箱型房屋半刚性连接节点力学性能研究[D]. 郑州:郑州大学,2019.
    [11]
    刘仲洋,张彪,杨甜,等. 钢结构模块间单边螺栓内套筒连接节点力学性能模拟研究[J/OL]. 工业建筑,2023[ 2023-12-21]. http://kns.cnki.net/kcms/detail/11.2068.TU.20231221.0900.002.html.
    [12]
    赵俊杰. 可拆装式箱型房屋内节点和整体受力性能研究[D]. 郑州:郑州大学,2021.
    [13]
    丁阳,邓恩峰,宗亮,等. 模块化钢结构建筑连接节点研究进展[J]. 建筑结构学报,2019,40(3):33- 40.
    [14]
    邓恩峰,宗亮,丁阳. 钢结构集成模块建筑新型节点力学性能研究[J]. 天津大学学报(自然科学与工程技术版),2018,51(7):702- 710.
    [15]
    张俊峰,杨大雍,胡文悌,等. 拆装式箱式房屋底框受力性能试验研究[J]. 建筑结构,2017,47(10):22- 27.
    [16]
    张俊峰,张英豪,赵俊杰,等. 可拆装式箱型房屋整体受力性能研究[J]. 建筑钢结构进展,2023,25(3):1- 13.
    [17]
    张俊峰,杨大雍,郭庆,等. 拆装式箱型房屋竖向承载力试验研究[J]. 工业建筑,2017,47(10):162- 167.
    [18]
    张俊峰,杨大雍,郭庆,等. 拆装式箱型房屋纵向抗侧刚度研究[J]. 钢结构,2018,33(3):1- 5.
    [19]
    帅逸群,熊伟,程威. 装配式打包箱式结构抗侧刚度及承载力分析[J]. 建筑结构,2022,52(24):44- 49.
    [20]
    冯云鹏. 打包箱式模块抗侧性能及多高层模块结构抗侧体系研究[D]. 天津:天津大学,2019.
    [21]
    Chen Z H,Zhong X,Liu Y,et al. Analytical and design method for the global stability of modular steel buildings[J]. International Journal of Steel Structures,2021,21(5):1741- 1758.
    [22]
    杨大雍. 拆装式箱型房屋结构受力性能研究[D]. 郑州:郑州大学,2017.
    [23]
    中国建筑金属结构协会. 集成打包箱式房屋:T/CCMSA 20108—2019[S]. 北京:中国建筑工业出版社,2019.
    [24]
    中国工程建设标准化协会. 箱式钢结构集成模块建筑技术规程:T/ CECS 641—2019[S]. 北京:中国计划出版社,2019.
    [25]
    中华人民共和国住房和城乡建设部. 冷弯薄壁型钢多层住宅技术标准:JGJ/T 421—2018[S]. 北京:中国建筑工业出版社,2018.
    [26]
    中华人民共和国住房和城乡建设部. 低层冷弯薄壁型钢房屋建筑技术规程:JGJ 227—2011[S]. 北京:中国建筑工业出版社,2011.
    [27]
    中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017—2017[S]. 北京:中国建筑工业出版社,2018.
    [28]
    全国钢标准化技术委员会. 金属材料拉伸试验:第1部分:室温试验方法:GB/T 228.1—2021

    [S]. 北京:中国标准出版社,2021.
    [29]
    中华人民共和国住房和城乡建设部. 箱型轻钢结构房屋第1部分:可拆装式:GB/ T 37260.1—2018

    [S]. 北京:中国标准出版社,2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (103) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return