Lijun Wang, Haiqun Yu, Jinpeng Tan, Ming Wang, Yaopeng Liu, Xingyu Li, Bing Xia, Wenhua Yu, Mingzhi Cui. Research Process in Seismic Design of Building Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 84-89. doi: 10.13206/j.gjgS24070921
Citation: Lijun Wang, Haiqun Yu, Jinpeng Tan, Ming Wang, Yaopeng Liu, Xingyu Li, Bing Xia, Wenhua Yu, Mingzhi Cui. Research Process in Seismic Design of Building Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 84-89. doi: 10.13206/j.gjgS24070921

Research Process in Seismic Design of Building Steel Structures

doi: 10.13206/j.gjgS24070921
  • Received Date: 2024-07-09
    Available Online: 2024-11-06
  • China’s seismic design started late, but after experiencing several major earthquakes, it has gradually established a comprehensive seismic design system through the absorption of foreign experiences and independent research, resulting in significant progress in the field of steel structures. Currently, China’s steel structure seismic design adopts the "three-level, two-stage" approach and has developed a performance-based seismic design philosophy. This paper reviews the historical evolution and latest advancements in seismic design for building steel structures both domestically and internationally. It comprehensively explains China’s development process in steel structure seismic design from scratch, from lagging behind to gradually aligning with world standards, through three perspectives: the historical development of China’s steel structure seismic technology, current mainstream technologies, and future prospects for this field. On the other hand, this paper provides a brief overview of major breakthroughs in relevant technologies from developed countries at different periods. Through comparison, it is evident that China’s steel structure seismic design technology has rapidly developed over the past few decades, but the paper also discusses the existing shortcomings. Finally, clear recommendations are provided for the future development of steel structure seismic-related technologies and standards in China.
  • [1]
    中央纺织工业部设计公司翻译组. 地震区建筑规范[M]. 北京:纺织工业出版社,1957.
    [2]
    American Society of Civil Engineers. Minimum design loads for building and other structures: ASCE 7-10[S]. USA: ASCE, 1957.
    [3]
    Veletsos A S, Newmark N M, Chelapati C V. Deformation spectra for elastic and elastoplastic systems subjected to ground shock and earthquake motions[C]//Proceedings of the Third World Conference on Earthquake Engineering. Wellinton, New Zealand: 1965:663-680.
    [4]
    Veletsos A S. Maximum deformations of certain nonlinear systems[C]//Proceedings of the 4th World Conference on Earthquake Engineering. Santiago: Chile, 1969:155-170.
    [5]
    中华人民共和国建设部. 工业与民用建筑抗震设计规范(试行):TJ 11—74[S]. 北京: 中国建筑工业出版社, 1974.
    [6]
    中华人民共和国建设部. 工业与民用建筑抗震设计规范:TJ 11—78[S]. 北京: 中国建筑工业出版社, 1978.
    [7]
    罗开海, 保海娥, 左琼. 我国建筑抗震设防水准的历史沿革、现状及展望[J]. 地震工程与工程振动, 2018, 38(4):41-47.
    [8]
    王亚勇, 戴国莹. 《建筑抗震设计规范》的发展沿革和最新修订[J]. 建筑结构学报, 2010, 31(6):7-16.
    [9]
    翟长海, 谢礼立. 抗震规范应用强度折减系数的现状及分析[J]. 地震工程与工程振动, 2006, 26(2):1-7.
    [10]
    American National Standards Institute. Uniform building code: UBC[S]. USA: ANSI,1957.
    [11]
    Newmark N M, Hall W J. Seismic design criteria for nuclear reactor facilities[C]//Proceedings of the 4th World Conference on Earthquake Engineering. Santiago: Chile, 1969:37-50.
    [12]
    Newmark N M, Hall W J. A rational approach of seismic design standards for structures[C]//Proceedings of the 5th World conference on Earthquake Engineering. San Francisco: USA, 1973.
    [13]
    国土交通省住宅局. 建築基準法令集[M]. 東京: 日本建築学会, 1971.
    [14]
    中华人民共和国建设部. 建筑抗震设计规范:GBJ 11—89[S]. 北京: 中国建筑工业出版社, 1989.
    [15]
    American Institute of Steel Construction. Seismic provisions for structural steel buildings: AISC 341-89[S]. USA:AISC, 1989.
    [16]
    中华人民共和国建设部. 建筑抗震设计规范:GB 50011—2001[S]. 北京: 中国建筑工业出版社, 2001.
    [17]
    中华人民共和国建设部. 高层民用建筑钢结构技术规程:JGJ 99—98[S]. 北京:中国建筑工业出版社, 1998.
    [18]
    Arroyo-Espinoza D, Teran-Gilmore A. Strength reduction factors for ductile structures with passive energy dissipating devices[J]. Journal of Earthquake Engineering, 2003, 7(2):297-325.
    [19]
    Tong G S, Z Y F. Seismic force modification factors for modified-clough hysteretic model[J]. Engineering Structures, 2007, 29(11):3053-3070.
    [20]
    Building Seismic Safety Council. NEHRP recommended provisions for seismic regulations for new buildings and other structures[R]. USA, Washington: Building Seismic Safety Council National Institute of Building Science, 2004.
    [21]
    中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2010.
    [22]
    中华人民共和国住房和城乡建设部. 高层民用建筑钢结构技术规程:JGJ 99—2015[S]. 北京:中国建筑工业出版社, 2015.
    [23]
    杨俊芬. 中心支撑钢框架的结构影响系数和位移放大系数研究[D]. 西安: 西安建筑科技大学, 2009.
    [24]
    陆懿, 顾强. 多层抗弯钢框架的结构影响系数[J]. 苏州科技学院学报(工程技术版), 2008, 21(4):1-4.
    [25]
    李宏, 刘正辉. 地震区钢结构设计的关键问题探讨[J]. 地震工程与工程振动, 2013, 33(5): 45-52.
    [26]
    Elnashai A S, Guan L J. Seismic performance of steel portal frames with semi-rigid connections[J]. Journal of Structural Engineering, 2004, 130(5): 779-788.
    [27]
    Zhu Z, Xu W. Seismic behavior of steel portal frames with semi-rigid connections[J]. Steel and Composite Structures, 2020, 36(4): 507-518.
    [28]
    中华人民共和国住房和城乡建设部. 钢结构设计标准: GB 50017—2017[S]. 北京: 中国建筑工业出版社, 2018.
    [29]
    肖明葵. 基于性能的抗震结构位移及能量反应分析方法研究[D]. 重庆: 重庆大学, 2004.
    [30]
    李慧. 中、美、欧、日建筑抗震规范地震作用对比研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
    [31]
    李赫, 罗超英, 刘军, 等. 中美抗震规范的差异对比研究[J]. 建筑结构, 2011, 41(9):123-126.
    [32]
    Fang C, Wang W, Qiu C X, et al.Seismic resilient steel structures: A review of research, practice, challenges and opportunities[J]. Journal of Constructional Steel Research, 2022,191:107-145.
    [33]
    施刚, 胡方鑫, 石永久. 各国规范钢框架结构抗震设计方法对比研究 (Ⅰ):设防目标与地震作用[J]. 建筑结构, 2017, 47(2):1-6.
    [34]
    施刚, 胡方鑫, 石永久. 各国规范钢框架结构抗震设计方法对比研究(Ⅱ):承载力、延性与侧移要求[J]. 建筑结构, 2017, 47(2):7-15.
  • Relative Articles

    [1]Genshu Tong. Classifications of Cross-Sections Oriented to Seismic Design of Steel Buildings[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(1): 74-78. doi: 10.13206/j.gjgS24120420
    [2]Genshu Tong. Seismic Design According to Standard for Design of Steel Structures (GB 50017-2017)[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(2): 58-60. doi: 10.3724/j.gjgS23031020
    [3]Jin Zhang, Lyulei Yang, Minfeng Gong, Yibin Sun. A Stratified and Classified Performance-Based Seismic Design Method and Its Application in Steel Concentrically Braced Frame Systems[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(12): 1-11. doi: 10.13206/j.gjgS24110501
    [4]Lijun Wang, Jinpeng Tan, Ming Wang. Conception of Structural Seismic Design Based on Double Carbon Goals[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(10): 32-41. doi: 10.13206/j.gjgs23072802
    [5]ZHANG Jin, WANG Li-jun, YANG Lyu-lei, GONG Min-feng. Discussion and Improvement Research on Performance-Based Seismic Design Method for Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(1): 37-65. doi: 10.13206/j.gjgS22121903
    [6]Chenyu Liang, Zhongyi Zhu, Kai Qin, Lin Zhang, Zhe Wang, Zhongfa Zhou. Seismic Design and Research of Roof Steel Structure of Beijing New Airport Terminal Building[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(5): 19-26. doi: 10.13206/j.gjgS255920181109
    [18]10.13206/j.gjg200801013[J]. STEEL CONSTRUCTION(Chinese & English), 2008, 23(1): 42-46.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125150
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.1 %FULLTEXT: 10.1 %META: 82.7 %META: 82.7 %PDF: 7.2 %PDF: 7.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 35.7 %其他: 35.7 %其他: 0.5 %其他: 0.5 %上海: 3.6 %上海: 3.6 %临沂: 0.3 %临沂: 0.3 %兰州: 0.3 %兰州: 0.3 %北京: 8.8 %北京: 8.8 %南京: 1.8 %南京: 1.8 %南昌: 1.0 %南昌: 1.0 %合肥: 0.5 %合肥: 0.5 %呼和浩特: 0.5 %呼和浩特: 0.5 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.3 %天津: 0.3 %太原: 0.5 %太原: 0.5 %安康: 0.5 %安康: 0.5 %安德森: 0.5 %安德森: 0.5 %岳阳: 0.3 %岳阳: 0.3 %常州: 0.5 %常州: 0.5 %广州: 1.8 %广州: 1.8 %张家口: 3.4 %张家口: 3.4 %张家界: 0.5 %张家界: 0.5 %徐州: 0.5 %徐州: 0.5 %德阳: 0.3 %德阳: 0.3 %成都: 1.3 %成都: 1.3 %扬州: 0.3 %扬州: 0.3 %拉瓦勒: 0.5 %拉瓦勒: 0.5 %昆明: 2.8 %昆明: 2.8 %晋城: 0.3 %晋城: 0.3 %朝阳: 1.0 %朝阳: 1.0 %杭州: 3.4 %杭州: 3.4 %柳州: 0.5 %柳州: 0.5 %武汉: 1.0 %武汉: 1.0 %济南: 0.8 %济南: 0.8 %深圳: 0.8 %深圳: 0.8 %温州: 0.3 %温州: 0.3 %湛江: 0.3 %湛江: 0.3 %滨州: 0.8 %滨州: 0.8 %漯河: 0.5 %漯河: 0.5 %福州: 1.0 %福州: 1.0 %秦皇岛: 0.3 %秦皇岛: 0.3 %纽约: 1.0 %纽约: 1.0 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 5.2 %芒廷维尤: 5.2 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.8 %苏州: 0.8 %蚌埠: 0.3 %蚌埠: 0.3 %衡水: 0.3 %衡水: 0.3 %西宁: 1.6 %西宁: 1.6 %西安: 1.0 %西安: 1.0 %运城: 0.3 %运城: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 7.8 %郑州: 7.8 %重庆: 1.3 %重庆: 1.3 %锦州: 0.3 %锦州: 0.3 %长沙: 0.5 %长沙: 0.5 %青岛: 0.8 %青岛: 0.8 %其他其他上海临沂兰州北京南京南昌合肥呼和浩特嘉兴天津太原安康安德森岳阳常州广州张家口张家界徐州德阳成都扬州拉瓦勒昆明晋城朝阳杭州柳州武汉济南深圳温州湛江滨州漯河福州秦皇岛纽约绵阳芒廷维尤芝加哥苏州蚌埠衡水西宁西安运城邯郸郑州重庆锦州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (318) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return