Volume 39 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Yuhang Wang, Xuhong Zhou, Lin Yang, Lixian Zhang, Wei Ren, Jiulin Bai, Kang Wang. Current Status and Development Trend of Supporting Structures for Wind Turbines[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 1-13. doi: 10.13206/j.gjgS24070220
Citation: Yuhang Wang, Xuhong Zhou, Lin Yang, Lixian Zhang, Wei Ren, Jiulin Bai, Kang Wang. Current Status and Development Trend of Supporting Structures for Wind Turbines[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 1-13. doi: 10.13206/j.gjgS24070220

Current Status and Development Trend of Supporting Structures for Wind Turbines

doi: 10.13206/j.gjgS24070220
  • Received Date: 2024-07-02
    Available Online: 2024-11-06
  • The development of wind power is an important path to achieve the "dual carbon" goals. Compared to Europe, Chinese wind power industry started later but has developed rapidly. Currently, Chinese wind power industry has entered the stage of on-grid parity and is facing a trend towards larger turbines, which poses higher requirements for the stability, safety, and economy of the wind turbine support structures (including the tower and foundation). For onshore wind turbines, the current widely used tower designs include full-steel and steel-concrete composite structures. Research on full-steel structures focuses mainly on local buckling and structural optimization, while the challenges in steel-concrete composite structures lie in the design of joints and concrete fatigue. When the hub heights exceed 140 meters, the steel-concrete composite tower is typically employed for the current design. In addition, lattice and truss towers for wind turbines have significant advantages for ultra-high towers, with various prototypes already connected to the grid. Regarding the foundations for onshore wind turbines, cast-in-place concrete foundations are widely used in the wind industry for their simplicity and adaptability, while prefabricated concrete foundations are an important development direction for enhancing construction efficiency. For fixed offshore wind turbine foundations, single-pile foundations are the simplest in structure and the most widely used. Gravity-based foundations, suction caissons, and multi-pile foundations have significant construction difficulties and have not yet been widely adopted. Conduit rack foundations, due to their high rigidity and stability, are experiencing a faster growth in application. As the development shifts from nearshore shallow waters to deeper waters, floating offshore wind foundations are emerging as a new development direction, including semi-submersible, tension leg, monopile, and barge-mounted designs. By the end of 2023, the total installed capacity of floating wind power in the world will not exceed 500 MW, indicating significant room for growth. At present, the supporting structures for wind turbine units still face issues such as incomplete design theories, a lack of generic design software with independent intellectual property rights, and an undeveloped technical standards system. In the future, it is necessary to focus on related work in these areas.
  • loading
  • [1]
    曾乐民, 黄何. 调整传统能源结构,加快广东风电发展[J]. 广东科技, 2005(9): 11-12.
    [2]
    王敏芳. 我国东部沿海地区电源结构优化目标[J]. 中国能源, 2005(8): 35-38.
    [3]
    文博. 从欧美风电发展看我国风电基地建设[J]. 国家电网, 2008(8): 67-68.
    [4]
    易跃春, 谢宏文, 易谢. 风力发电的西部优势[J]. 西部论丛, 2004(1): 25-26.
    [5]
    China Electricity Council(CEC). Preliminary statistics of the national electric power industry[S]. Beijing: CEC, 2011.
    [6]
    周昳鸣, 闫姝, 刘鑫, 等. 中国海上风电支撑结构一体化设计综述[J]. 发电技术, 2023, 44(1): 36-43.
    [7]
    王丹, 徐军, 贺广零, 等. 风电机组混凝土-钢混合塔筒技术现状与发展趋势[J/OL]. 土木与环境工程学报(中英文), 1-18[2024-09-24].http://kns.cnki.net/kcms/detail/50.1218.TU.20230920.1025.002.html.
    [8]
    香东远. 风电塔筒制作过程中的质量检验与控制研究[J]. 机械管理开发, 2023, 38(3): 65-67.
    [9]
    李庆堂, 杨保维, 付有泰. 新能源风电塔筒制作中几个重难点问题探讨[J]. 水电站机电技术, 2023, 46(7): 42-45

    ,140.
    [10]
    Nuta E, Christopoulos C, Packer J A. Methodology for seismic risk assessment for tubular steel wind turbine towers: application to Canadian seismic environment[J]. Canadian Journal of Civil Engineering, 2011, 38(3): 293-304.
    [11]
    王经亚. 陆上风电塔筒产品发展趋势探析[J]. 中国设备工程, 2022(10): 223-226.
    [12]
    李杰, 李裕文. 柔塔风电机组避振策略及避振产能损失研究[J]. 河南电力, 2021(增刊2): 109-111,42.
    [13]
    张志龙, 方钊, 刘亚娟, 等. 双风轮风电机组的主动共振穿越控制研究[J]. 热力发电, 2023, 52(3): 130-135.
    [14]
    杨静. 大型风力发电机组塔架振动控制研究[D]. 西安:西安理工大学, 2020.
    [15]
    杨永春, 李响亮, 刘坤宁, 等. TMD在海上风电塔架中的减振效果研究[J]. 船舶工程, 2014, 36(增刊1): 235-238.
    [16]
    Wang L K, Zhou Y, Shi W X. Seismic response control of a nonlinear tall building under mainshock-aftershock sequences using semi-active tuned mass damper[J]. International Journal of Structural Stability and Dynamics, 2023, 23,16N18.
    [17]
    秦文宇. 风力机叶片振动抑制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2022.
    [18]
    蒋韬, 刘红文, 陆仕信, 等. 风电机组复杂工况下振动抑制模糊控制策略[J]. 控制与信息技术, 2024(2):26-31.
    [19]
    Jay A, Myers A, Torabian S, et al. Static flexural local buckling tests on large scale spirally welded tubes for use as wind turbine towers[C]//International Conference on Operations Research. Portland:2015: 1854-1867.
    [20]
    Jay A, Myers A T, Torabian S, et al. Spirally welded steel wind towers: buckling experiments, analyses, and research needs[J]. Journal of Constructional Steel Research, 2016, 125: 218-226.
    [21]
    Jay A L. Experimental investigation of the local buckling and fatigue behavior of slender and tapered spirally welded steel tubes to enable taller wind towers[D]. Boston: Northeastern University, 2017.
    [22]
    Jay A, Myers A T, Mirzaie F, et al. Large-scale bending tests of slender tapered spirally welded steel tubes[J/OL]. Journal of Structural Engineering, 2016, 142(12)[2024-07-02].https://doi.org/10.1061/(ASCE)ST.1943-541X.0001605.
    [23]
    Mahmoud A. Analysis and design of spirally welded thin-walled steel tapered cylindrical shells under bending with application to wind turbine towers[D]. Baltimore: Johns Hopkins University, 2017.
    [24]
    Mahmoud A, Torabian S, Jay A, et al. Modeling the flexural collapse of thin-walled spirally welded tapered tubes[J/OL]. Journal of Structural Engineering, 2018, 144(2)[2024-07-02]. http://doi.org/10.1061/(ASCE)ST.1943-541X.0001950.
    [25]
    吴德俊. 大型风力发电机塔架构件局部屈曲强度及稳定性分析[D]. 重庆:重庆大学, 2012.
    [26]
    刘旋. 风电机组塔架有限元分析与结构参数多目标优化[D]. 湘潭:湖南科技大学, 2013.
    [27]
    丁天祥. 大型风力发电机塔架多目标结构优化研究[D]. 重庆:重庆大学, 2016.
    [28]
    阎石, 牛健. 基于风电塔架结构的智能材料耗能阻尼器研究[J]. 智能建筑与智慧城市, 2020(4): 13-17.
    [29]
    李万润, 杨州, 杜永峰. 一种新型风电塔架结构用双向TMD风致响应减振控制研究[J]. 振动与冲击, 2021, 40(12): 114-123.
    [30]
    都治良. 基于边缘计算的风力发电机组塔架振动建模与分析[D]. 沈阳:沈阳工程学院,2023.
    [31]
    刘文, 张淼, 张亚静, 等. 风电支撑结构静强度与疲劳可靠性分析[J]. 土木工程与管理学报, 2018, 35(3): 124-128

    ,34.
    [32]
    王振辉. 陆上典型风电塔结构地震易损性研究[D]. 哈尔滨:中国地震局工程力学研究所, 2023.
    [33]
    Kenna A, Basu B. A finite element model for pre-stressed or post-tensioned concrete wind turbine towers[J]. Wind Energy, 2015, 18(9): 1593-1610.
    [34]
    边杰, 余洁, 孔维博. 体外后张预应力装配式风电钢混塔筒结构设计[C]//2021年工业建筑学术交流会论文集. 北京: 2021.
    [35]
    张冬冬, 马宏旺, 马泽. 三种5 MW风电塔架的综合性能对比研究[J]. 四川建筑科学研究, 2015, 41(6): 133-137.
    [36]
    Wu X, Zhang X, Zhang Q, et al. Design and behavior of 160 m-tall post-tensioned precast concrete-steel hybrid wind turbine tower[J]. Steel and Composite Structures, 2022, 44(3): 393-407.
    [37]
    Li Z, Xu B, Wang J, et al. Experimental and two-scale numerical studies on the behavior of prestressed concrete-steel hybrid wind turbine tower models[J]. Engineering Structures, 2023, 279,115622.
    [38]
    Veldkamp D. A probabilistic evaluation of wind turbine fatigue design rules[J]. Wind Energy, 2008, 11(6): 655-672.
    [39]
    曾杰. 大型水平轴风力机载荷计算和强度分析的方法研究[D]. 乌鲁木齐:新疆农业大学, 2001.
    [40]
    岳勇, 崔新维, 吴安. 风力机疲劳载荷谱的编制方法研究[J]. 太阳能, 2013(21): 14-16,3.
    [41]
    徐双琼. 钢筋混凝土结构的疲劳性能研究综述[J]. 山西建筑, 2010, 36(24): 86-87.
    [42]
    殷曹刚, 王玉田, 姜福香, 等. 钢筋混凝土结构疲劳性能研究综述[C]//建筑科技与管理学术交流会论文集. 北京:2014.
    [43]
    Kachkouch F Z, Noberto C C, de Albuquerque Lima Babadopulos L F, et al. Fatigue behavior of concrete: a literature review on the main relevant parameters[J]. Construction Building and Materials, 2022, 338, 127510.
    [44]
    Riyar R L, Mansi S, Bhowmik S. Fatigue behaviour of plain and reinforced concrete: a systematic review[J]. Theoretical and Applied Fracture Mechanics, 2023, 125,103867.
    [45]
    余智, 张凤亮, 熊海贝. 基于线性累计损伤理论的预应力混凝土风电塔架疲劳可靠性及剩余寿命研究[J]. 武汉大学学报(工学版), 2016, 49(5): 756-762.
    [46]
    时文浩. 钢-混凝土组合风机塔风致疲劳可靠度研究[D]. 西安:西安建筑科技大学, 2022.
    [47]
    罗宇骁, 马人乐, 裘科一. 构架式预应力抗疲劳钢管风电塔抗疲劳设计方法[J]. 建筑钢结构进展, 2021, 23(5): 73-81

    ,100.
    [48]
    张杰, 李强, 谭俊, 等. 预应力钢管混凝土格构式风机塔架节点及过渡段有限元分析[J]. 船舶工程, 2022, 44(增刊2): 116-121.
    [49]
    高晓燕. 国内首台三边形桁架塔风电机组并网成功[N]. 株洲日报,2023-11-09(1).
    [50]
    武汉釜硕新能源. 跨越式创新!新型塔架技术 国内首台陆上7MW风机现世[EB/OL]. [2022-06-09

    ]. https://www.eptc.org.cn/news/1534793783222292481.
    [51]
    李早, 李大均, 陈利德, 等. 陆上风电场风机基础形式分析[J]. 神华科技, 2013, 11(3): 61-64.
    [52]
    白久林, 王瑞毅, 王宇航, 等. 陆上风电装配式基础结构研究综述[J]. 土木与环境工程学报(中英文), 2024, 46(3): 80-93.
    [53]
    王利楠, 郝华庚, 丛欧, 等. 半预制半现浇混凝土风机基础的受力分析[J]. 可再生能源, 2017, 35(11): 1719-1726.
    [54]
    Li X, Hao H, Wang H, et al. Design and analysis of a new prefabricated foundation for onshore wind turbines[J]. Buildings, 2024, 14(1),193.
    [55]
    Schuldt C, Stecher A, Schuldt C H. Foundation for wind turbine: AT517959-A4[P].2017-11-24.
    [56]
    马人乐, 何敏娟. 预应力锚栓预制拼装筒式风机基础: CN201411706[P].2010-02-24.
    [57]
    Carroza D M, Marquardt R, Mohaghegh A M. Mold part set for wind turbine foundation, has two mold parts that form trough-shaped mold part assembly with trough base formed by base of mold parts in joined state: WO2022174913-A1[P].2022-09-16.
    [58]
    田春雨, 周剑. 一种装配式风电塔筒基础及其施工方法: CN109518712A[P]. 2019-03-26.
    [59]
    刘学全. 海上风电单桩基础及风机施工安装概述[J]. 石油和化工设备, 2024, 27(4): 116-119.
    [60]
    Zeng X, Shi W, Michailides C, et al. Numerical and experimental investigation of breaking wave forces on a monopile-type offshore wind turbine[J]. Renewable Energy, 2021, 175: 501-519.
    [61]
    孙毅龙, 许成顺, 席仁强, 等. 长期水平荷载对单桩式海上风机结构自振频率的影响分析[J]. 振动与冲击, 2023, 42(2): 108-115

    ,38.
    [62]
    王宾, 李红涛, 刘嵩, 等. 海上风电单桩式支撑结构冰激振动及参数敏感性分析[J]. 海洋工程, 2020, 38(3): 94-101.
    [63]
    王宇航, 唐浩渊, 邹亮, 等. 海上风电机组固定式支撑结构环境敏感性分析及极限工况下的一体化设计[J]. 特种结构, 2020, 37(5): 1-6.
    [64]
    吴蕴丰. 海上风电吸力筒导管架基础关键施工技术[J]. 中国水运, 2023, 23(10): 51-53.
    [65]
    Lian J, Ding H, Zhang P, et al. Design of large-scale prestressing bucket foundation for offshore wind turbines[J]. Transactions of Tianjin University, 2012, 18(2): 79-84.
    [66]
    王凯, 韩若朗, 许条建, 等. 海上风机导管架与网箱组合结构水动力特性试验研究[J/OL]. 中国舰船研究, [2024-06-20]. https: //doi.10.19693/j.issn-1673-3185.
    [67]
    Saha N, Gao Z, Moan T, et al. Short-term extreme response analysis of a jacket supporting an offshore wind turbine[J]. Wind Energy, 2014, 17(1): 87-104.
    [68]
    周文杰, 王立忠, 汤旅军, 等. 导管架基础海上风机动力响应数值分析[J]. 浙江大学学报(工学版), 2019, 53(8): 1431-1437,47.
    [69]
    黄中华, 刘喆, 谢雅, 等. 海上风机多桩式支撑结构动力学特性[J]. 机械制造与自动化, 2023, 52(2): 15-18

    ,34.
    [70]
    严心宽, 陈超核, 樊天慧, 等. 风浪联合作用下5 MW三桩固定式风机动力特性响应[J]. 中国海洋平台, 2020, 35(3): 33-37

    ,42.
    [71]
    林毅峰, 陆忠民, 黄俊, 等. 海上风电机组高承台群桩基础设计特点及关键力学问题[J]. 海洋技术学报, 2016, 35(5): 29-36.
    [72]
    林毅峰, 周旋, 黄俊, 等. 海上风电机组高承台群桩基础整体协同作用下极限承载特性分析[J]. 水力发电, 2017, 43(2): 108-113.
    [73]
    赵北辰, 张永利. 海上风机重力式基础承载力校核与沉降分析[J]. 黑龙江水利科技, 2022, 50(4): 156-160

    ,216.
    [74]
    Esteban M D, López-Gutiérrez J S, Negro V. Gravity-based foundations in the offshore wind sector[J]. Journal of Marine Science and Engineering, 2019, 7(3),64.
    [75]
    霍宏斌, 王尔贝, 陈锐, 等. 一种新型重力式海上风机基础承载特性分析[J]. 地下空间与工程学报, 2013, 9(增刊1): 1554-1558.
    [76]
    Williams R, Zhao F. Global offshore wind report 2024[R]. Brussels, Belgium:Global Wind Energy Council, 2024.
    [77]
    周绪红, 王宇航, 邓然. 海上风电机组浮式基础结构综述[J]. 中国电力, 2020, 53(7): 100-105

    ,12.
    [78]
    Yu Z, Amdahl J, Rypestél M, et al. Numerical modelling and dynamic response analysis of a 10 MW semi-submersible floating offshore wind turbine subjected to ship collision loads[J]. Renewable Energy, 2022, 184: 677-699.
    [79]
    Zhang L, Shi W, Karimirad M, et al. Second-order hydrodynamic effects on the response of three semisubmersible floating offshore wind turbines[J]. Ocean Engineering, 2020, 207, 107371.
    [80]
    Zhang L, Michailides C, Wang Y, et al. Moderate water depth effects on the response of a floating wind turbine[J]. Structures, 2020,28: 1435-1448.
    [81]
    方龙, 翟恩地, 李荣富, 等. 半潜式风电机组平台水动力模型试验及数值模拟研究[J]. 天津大学学报(自然科学与工程技术版), 2023, 56(11): 1145-1156.
    [82]
    方龙, 翟恩地, 李荣富, 等. 一种半潜式商用6 MW级风力机载荷数值模拟研究[J]. 哈尔滨工程大学学报, 2024, 45(1): 17-24

    ,128.
    [83]
    Ren Y, Venugopal V, Shi W. Dynamic analysis of a multi-column TLP floating offshore wind turbine with tendon failure scenarios[J]. Ocean Engineering, 2022, 245, 110472.
    [84]
    Oguz E, Clelland D, Day A H, et al. Experimental and numerical analysis of a TLP floating offshore wind turbine[J]. Ocean Engineering, 2018, 147: 591-605.
    [85]
    Madsen F J, Nielsen T R L, Kim T, et al. Experimental analysis of the scaled DTU10MW TLP floating wind turbine with different control strategies[J]. Renewable Energy, 2020, 155: 330-346.
    [86]
    Duan F, Hu Z, Niedzwecki J M. Model test investigation of a spar floating wind turbine[J]. Marine Structures, 2016, 49: 76-96.
    [87]
    Si Y, Karimi H R, Gao H. Modelling and optimization of a passive structural control design for a spar-type floating wind turbine[J]. Engineering Structures, 2014, 69: 168-182.
    [88]
    陈易人, 姚靳羽, 李明轩, 等. 带月池驳船式浮式风力机水动力性能[J]. 上海交通大学学报,2024,58(7): 965-982.
    [89]
    Vijay K G, Karmakar D, Uzunoglu E, et al. Performance of barge-type floaters for floating wind turbine[C]//2nd International Conference on Renewable Energies Offshore (RENEW). Lisbon,Portugal: 2016: 637-645.
    [90]
    Chuang Z, Liu S, Lu Y. Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine[J]. International Journal of Naval Architecture and Ocean Engineering, 2020, 12: 367-375.
    [91]
    Shao Y, Zheng Z, Liang H, et al. A consistent second-order hydrodynamic model in the time domain for floating structures with large horizontal motions[J]. Computer-Aided Civil and Infrastructure Engineering, 2022, 37(7): 894-914.
    [92]
    Thoppil A, Akbar M, Rambabu D. Dynamic analysis of a tri-floater with vertical axis wind turbine supported at its centroid[J]. Journal of Energy Systems, 2021, 5(1): 10-19.
    [93]
    Roddier D, Cermelli C, Aubault A, et al. WindFloat: A floating foundation for offshore wind turbines[J]. Journal of Renewable and Sustainable Energy, 2010, 2(3),033104.
    [94]
    Robertson A, Jonkman J, Masciola M, et al. Definition of the semisubmersible floating system for phase II of OC4[R]. Golden, CO: National Renewable Energy Lab (NREL), 2014.
    [95]
    Luan C, Gao Z, Moan T. Development and verification of a time-domain approach for determining forces and moments in structural components of floaters with an application to floating wind turbines[J]. Marine Structures, 2017, 51: 87-109.
    [96]
    伍绍博, 尹海卿, 张开华, 等. 日本漂浮式风电技术现状及未来发展方向[J]. 中国港湾建设, 2017, 37(6): 108-114.
    [97]
    Wang B, Tang Y, Li Y, et al. Effects of second-order sum-and difference-frequency wave forces on the motion response of a tension-leg platform considering the set-down motion[J]. Journal of Ocean University of China, 2018, 17: 311-319.
    [98]
    Park S, Lackner M A, Pourazarm P, et al. An investigation on the impacts of passive and semiactive structural control on a fixed bottom and a floating offshore wind turbine[J]. Wind Energy, 2019, 22(11): 1451-1471.
    [99]
    Jonkman J M, Matha D. Dynamics of offshore floating wind turbines: analysis of three concepts[J]. Wind Energy, 2011, 14(4): 557-569.
    [100]
    Adam F, Myland T, Schuldt B, et al. Evaluation of internal force superposition on a TLP for wind turbines[J]. Renewable Energy, 2014, 71: 271-275.
    [101]
    Carlson D W, Modarres S Y. Vortex-induced vibration of spar platforms for floating offshore wind turbines[J]. Wind Energy, 2018, 21(11): 1169-1176.
    [102]
    李嘉文. 新型海上风机浮式基础设计与风机系统耦合动力分析[D]. 天津: 天津大学, 2014.
    [103]
    Jiang Z, Wen B, Chen G, et al. Feasibility studies of a novel spar-type floating wind turbine for moderate water depths: hydrodynamic perspective with model test[J]. Ocean Engineering, 2021, 233, 109070.
    [104]
    王家星. 多柱 Spar 型浮式风机平台设计及其动力响应分析[D]. 杭州:浙江大学, 2018.
    [105]
    李彬彬. 新型深吃水多立柱平台的水动力与运动响应研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
    [106]
    肖阳宏, 李磊, 张兆德, 等. Spar型浮式风力机涡激运动特性及其抑制研究[J]. 太阳能学报, 2022, 43(10): 152-158.
    [107]
    王丽元. 平台随机垂荡及涡激引起的深海立管动力响应分析[D]. 天津:天津大学, 2012.
    [108]
    Alexandre A, Percher Y, Choisnet T, et al. Coupled analysis and numerical model verification for the 2 MW floatgen demonstrator project with ideol platform[C]//ASME 2018 1st International Offshore Wind Technical Conference. San Francisco, CA:2018.
    [109]
    Baita-Saavedra E, Cordal-Iglesias D, Filgueira-Vizoso A, et al. An economic analysis of an innovative floating offshore wind platform built with concrete: The SATH®Platform[J]. Applied Sciences-Basel, 2020, 10(11),3678.
    [110]
    Jacobsen A, Godvik M. Influence of wakes and atmospheric stability on the floater responses of the Hywind Scotland wind turbines[J]. Wind Energy, 2021, 24(2): 149-161.
    [111]
    Cermelli C, Roddier D, Aubault A. WindFloat: a floating foundation for offshore wind turbines—part II: hydrodynamics analysis[C]//ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, Hawaii: 2009: 135-143.
    [112]
    全球首台抗台风型漂浮式海上风电机组顺利安装[J]. 安装, 2021(8): 14.
    [113]
    王进, 邝展婷. "扶揺"直上 海上风电赴深蓝[N]. 2022-06-01(4).
    [114]
    陆晓如. "观澜"有术,绿电跨越深远海[J]. 中国石油石化, 2023(8): 43-45.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (41) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return