Citation: | Chunfang Lu, Xiaoguang Liu. Review on Global Development of Weathering Steel Bridges[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 21-31. doi: 10.13206/j.gjgS24070120 |
[1] |
周履.桥梁耐久性发展的历史与现状[J].桥梁建设,2000(4):58-61.
|
[2] |
郑凯锋, 张宇, 衡俊霖,等. 高强度耐候钢及其在桥梁中的应用与前景[J]. 哈尔滨工业大学学报, 2020, 52(3):1-10.
|
[3] |
卢春房,张航,陈明玉.新时代背景下的交通运输高质量发展[J].中国公路学报,2021,34(6):1-9.
|
[4] |
于千. 耐候钢发展现状及展望[J]. 钢铁研究学报, 2007, 19(11):1-4.
|
[5] |
Albrecht P, Naeemi A H. Performance of weathering steel in bridges[R]. Washington D C:NCHRP Report, 1984.
|
[6] |
Federal Highway Administration. Uncoated weathering steel in structures[EB/OL]. [2017-06-27]. https://www.fhwa.dot.gov/bridge/t514022.cfm.
|
[7] |
日本桥梁建设协会. 耐候性钢桥设计手册(日文)[M]. 4版. 东京:日本桥梁建设协会, 2021.
|
[8] |
Ungermann D, Hatke P. European design guide for the use of weathering steel in bridge construction[M]. Brussels, Belgium: ECCS-European Convention for Constructional Steelwork, 2021.
|
[9] |
Albrecht P, Coburn S K. Guidelines for the use of weathering steel in bridges[R]. Washington D C: NCHRP, 1989.
|
[10] |
McConnell J, Shenton H, Mertz D, et al. National review on use and performance of uncoated weathering steel highway bridges[J]. Journal of Bridge Engineering, 2014, 19(5):1-11.
|
[11] |
日本桥梁建设协会. 耐候性钢桥实绩资料集(第29版 2022年)(日文)[EB/OL]. [2019-03-01
]. https://www.jasbc.or.jp/technique/files/jisseki22_001.pdf, 2024.3.
|
[12] |
西崎到, 守屋進, 浜村寿弘, 等. 关于钢桥防腐蚀工的维修方法合作研究报告[EB/OL]. [2010-12-01]. https://www.pwri.go.jp/team/imarrc/research/tech-info/co414.pdf, 2023.2.
|
[13] |
黄涛. 耐候钢在南海海洋大气环境下的腐蚀行为研究[D]. 北京:钢铁研究总院, 2018.
|
[14] |
朱劲松,郭晓宇,亢景付,等. 耐候桥梁钢腐蚀力学行为研究及其应用进展[J]. 中国公路学报, 2019,32(5):1-16.
|
[15] |
郭晓宇. 耐候钢-UHPC华夫板组合梁抗弯性能及其设计方法研究[D].天津:天津大学, 2019.
|
[16] |
王春生,张静雯,段兰,等.长寿命高性能耐候钢桥研究进展与工程应用[J]. 交通运输工程学报, 2020, 20(1):1-26.
|
[17] |
徐向军,高建忠,刘洪武,等. Q345qENH耐候桥梁钢在官厅水库公路特大桥上的应用技术[J]. 金属加工(热加工), 2021(3):34-40.
|
[18] |
孙宗磊,张上.潍莱铁路跨青荣特大桥全焊接免涂装耐候钢钢桁梁设计[J]. 桥梁建设, 2021, 51(1):109-114.
|
[19] |
徐向军,高建忠,刘洪武,等.Q345qENH耐候桥梁钢在官厅水库公路特大桥上的应用技术[J].金属加工(热加工),2021(3):34-40.
|
[20] |
徐向军, 田智杰,高建忠,等.桥梁用新型超低温高性能Q420qFNH耐候钢焊接试验研究[J]. 金属加工(热加工), 2019(11): 1-6.
|
[21] |
ASTM. Standard specification for structural steel for bridges:A709-21[S]. Pennsylvania:ASTM, 2021.
|
[22] |
Miki C, Ichikawa A, Ukai M, et al. Proposal for weathering alloy index and accelerated corrosion test method to select weathering steels[J]. Journals of the Japan Society of Civil Engineer, 2003, 738:271-281.
|
[23] |
Kage I, Matsui K, Kawabata F. Minimum maintenance steel plates and their application technologies for bridge: life cycle cost reduction technologies with environmental safeguards for preserving social infrastructure assets[EB/OL].[2005-03-01]. https://www.jfe-steel.co.jp/en/research/report/005/pdf/005-07.pdf.
|
[24] |
中国国家标准化管理委员会. 耐候结构钢:GB/T 4171—2008[S]. 北京: 中国标准出版社, 2009.
|
[25] |
中国国家标准化管理委员会. 桥梁用结构钢:GB/T 714—2015[S]. 北京: 中国标准出版社, 2016.
|
[26] |
国家铁路局. 铁路桥梁用结构钢: TB/T 3556—2020[S]. 北京: 中国铁道出版社, 2020.
|
[27] |
Buck D. Copper in steel-the influence on corrosion[J]. Ind. Eng. Chem, 2002, 5(6):447-452.
|
[28] |
Townsend H. Effects of alloying elements on the corrosion of steel in industrial atmospheres[J]. Corrosion, 2001, 57(6):497-501.
|
[29] |
Copson H. Long-time atmospheric corrosion tests on low-alloy steels[J]. Proc. ASTM, 1960, 60:1-16.
|
[30] |
Larrabee C. Corrosion resistance of high-strength low-alloy steels as influenced by composition and environment[J].Corrosion,1953,9(8):259-271.
|
[31] |
Legault R, Leckie H. Effect of alloy composition on the atmospheric corrosion behavior of steels based on a statistical analysis of the larrabee-coburn data set[J]. ASTM Special Technical Publication, 1974, 558:334-347.
|
[32] |
ASTM. Standard guide for estimating the atmospheric corrosion resistance of low-alloy steels: G101-04[S]. Pennsylvania: ASTM, 2020.
|
[33] |
日本桥梁建设协会. 耐候性钢桥的适用性评价和防腐预防保护(日文)[M]. 东京:日本桥梁建设协会, 2009.
|
[34] |
梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究[J]. 中国腐蚀与防护学报, 2005,25(1):2-7.
|
[35] |
梁彩凤, 侯文泰. 碳钢及低合金钢8年大气暴露腐蚀研究[J]. 腐蚀科学与防护技术, 1995(3):183-186.
|
[36] |
梁彩凤, 侯文泰. 钢的大气腐蚀预测[J]. 中国腐蚀与防护学报, 2006(3):3129-3135.
|
[37] |
The Highways Agency. Weathering steel for highway structures: BD 7/81[S]. Birmingham:The Highways Agency, 1981.
|
[38] |
李彬洋,刘晓光,郭辉,等.桥梁用耐候钢环境-材料适应性评价标准综述[J].铁道建筑,2023,63(12):69-76.
|
[39] |
ASTM. Standard practice for characterization of atmospheric test sites: G92-2020[S]. Pennsylvania:ASTM, 2020.
|
[40] |
ASTM. Standard practice for measurement of time-of-wetness on surfaces exposed to wetting conditions as in atmospheric corrosion testing: G84-2020[S]. Pennsylvania:ASTM, 2020.
|
[41] |
刘涛,王胜民,侯云波,等.耐候钢表面锈层稳定化研究现状[J].表面技术,2018,47(10):240-248.
|
[42] |
Federal Highway Administration. High performance steel designers’ guide. 2nd[EB/OL]. [1989-10-01]. https://www.fhwa.dot.gov/download/hpsguide.pdf, 2024.4.
|
[43] |
车平,李军平,黄会强,等.高性能Q420qENH耐候桥梁钢焊接试验[J].焊接,2021(1):42-50,63
-64.
|
[44] |
彭宁琦,付贵勤,杨建华,等.Q690q耐候桥梁钢免预热焊接热影响区的组织性能[J].钢铁,2022,57(12):152-160.
|
[45] |
熊祥江,史术华,范明,等.高性能桥梁钢Q690qENH组织性能[J].金属材料与冶金工程,2020,48(6):15-21.
|
[46] |
闫博,胡会成,熊文名.高性能桥梁用钢Q420qE的研制开发[J].天津冶金,2021(5):34-37.
|
[47] |
徐向军.桥梁钢结构焊接材料的应用与发展[J].金属加工(热加工),2016(8):23-24.
|
[48] |
姜艳雯,杨洮林.高韧性耐候桥梁钢焊接材料研制[J].石河子科技,2021(3):14-15.
|
[49] |
中国钢铁工业协会. 耐候钢锈层稳定性检测方法:T/CISA 192—2021[S]. 北京. 中国标准出版社, 2021.
|