Volume 39 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Chunfang Lu, Xiaoguang Liu. Review on Global Development of Weathering Steel Bridges[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 21-31. doi: 10.13206/j.gjgS24070120
Citation: Chunfang Lu, Xiaoguang Liu. Review on Global Development of Weathering Steel Bridges[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 21-31. doi: 10.13206/j.gjgS24070120

Review on Global Development of Weathering Steel Bridges

doi: 10.13206/j.gjgS24070120
  • Received Date: 2024-07-01
    Available Online: 2024-11-06
  • In order to promote the progress and development of weathering steel bridge technology in China, a comprehensive review was conducted on the technical status of weathering steel bridges in the United States, Japan, Europe, and China. The review covered five aspects: engineering application, performance requirements of weathering steel bridges, design considerations, connections and maintenance techniques. The analysis reveals that weathering steel bridges are extensively utilized in the United States and Europe with favorable outcomes. Japan has experienced a decline in the proportion of weathering steel bridges over time after reaching its peak around 2008. Through years of engineering applications and technological advancements, the United States, Japan and Europe have achieved relative maturity regarding weathering steels selection as well as design considerations, connections, and maintenance techniques. China’s application of weathering steel bridges has witnessed significant progress in recent years with numerous successful projects implemented across highway and railway infrastructure. Practical experience clearly demonstrates that the effectiveness of utilizing weathering steel bridges is closely linked to environmental conditions and climate factors. Therefore it is crucial to accumulate practical knowledge during implementation such as surface treatment techniques for stable rust layers; indices for climatic conditions; along with zoning guidelines specific to domestic applications of weathering steel bridge technology.
  • loading
  • [1]
    周履.桥梁耐久性发展的历史与现状[J].桥梁建设,2000(4):58-61.
    [2]
    郑凯锋, 张宇, 衡俊霖,等. 高强度耐候钢及其在桥梁中的应用与前景[J]. 哈尔滨工业大学学报, 2020, 52(3):1-10.
    [3]
    卢春房,张航,陈明玉.新时代背景下的交通运输高质量发展[J].中国公路学报,2021,34(6):1-9.
    [4]
    于千. 耐候钢发展现状及展望[J]. 钢铁研究学报, 2007, 19(11):1-4.
    [5]
    Albrecht P, Naeemi A H. Performance of weathering steel in bridges[R]. Washington D C:NCHRP Report, 1984.
    [6]
    Federal Highway Administration. Uncoated weathering steel in structures[EB/OL]. [2017-06-27]. https://www.fhwa.dot.gov/bridge/t514022.cfm.
    [7]
    日本桥梁建设协会. 耐候性钢桥设计手册(日文)[M]. 4版. 东京:日本桥梁建设协会, 2021.
    [8]
    Ungermann D, Hatke P. European design guide for the use of weathering steel in bridge construction[M]. Brussels, Belgium: ECCS-European Convention for Constructional Steelwork, 2021.
    [9]
    Albrecht P, Coburn S K. Guidelines for the use of weathering steel in bridges[R]. Washington D C: NCHRP, 1989.
    [10]
    McConnell J, Shenton H, Mertz D, et al. National review on use and performance of uncoated weathering steel highway bridges[J]. Journal of Bridge Engineering, 2014, 19(5):1-11.
    [11]
    日本桥梁建设协会. 耐候性钢桥实绩资料集(第29版 2022年)(日文)[EB/OL]. [2019-03-01

    ]. https://www.jasbc.or.jp/technique/files/jisseki22_001.pdf, 2024.3.
    [12]
    西崎到, 守屋進, 浜村寿弘, 等. 关于钢桥防腐蚀工的维修方法合作研究报告[EB/OL]. [2010-12-01]. https://www.pwri.go.jp/team/imarrc/research/tech-info/co414.pdf, 2023.2.
    [13]
    黄涛. 耐候钢在南海海洋大气环境下的腐蚀行为研究[D]. 北京:钢铁研究总院, 2018.
    [14]
    朱劲松,郭晓宇,亢景付,等. 耐候桥梁钢腐蚀力学行为研究及其应用进展[J]. 中国公路学报, 2019,32(5):1-16.
    [15]
    郭晓宇. 耐候钢-UHPC华夫板组合梁抗弯性能及其设计方法研究[D].天津:天津大学, 2019.
    [16]
    王春生,张静雯,段兰,等.长寿命高性能耐候钢桥研究进展与工程应用[J]. 交通运输工程学报, 2020, 20(1):1-26.
    [17]
    徐向军,高建忠,刘洪武,等. Q345qENH耐候桥梁钢在官厅水库公路特大桥上的应用技术[J]. 金属加工(热加工), 2021(3):34-40.
    [18]
    孙宗磊,张上.潍莱铁路跨青荣特大桥全焊接免涂装耐候钢钢桁梁设计[J]. 桥梁建设, 2021, 51(1):109-114.
    [19]
    徐向军,高建忠,刘洪武,等.Q345qENH耐候桥梁钢在官厅水库公路特大桥上的应用技术[J].金属加工(热加工),2021(3):34-40.
    [20]
    徐向军, 田智杰,高建忠,等.桥梁用新型超低温高性能Q420qFNH耐候钢焊接试验研究[J]. 金属加工(热加工), 2019(11): 1-6.
    [21]
    ASTM. Standard specification for structural steel for bridges:A709-21[S]. Pennsylvania:ASTM, 2021.
    [22]
    Miki C, Ichikawa A, Ukai M, et al. Proposal for weathering alloy index and accelerated corrosion test method to select weathering steels[J]. Journals of the Japan Society of Civil Engineer, 2003, 738:271-281.
    [23]
    Kage I, Matsui K, Kawabata F. Minimum maintenance steel plates and their application technologies for bridge: life cycle cost reduction technologies with environmental safeguards for preserving social infrastructure assets[EB/OL].[2005-03-01]. https://www.jfe-steel.co.jp/en/research/report/005/pdf/005-07.pdf.
    [24]
    中国国家标准化管理委员会. 耐候结构钢:GB/T 4171—2008[S]. 北京: 中国标准出版社, 2009.
    [25]
    中国国家标准化管理委员会. 桥梁用结构钢:GB/T 714—2015[S]. 北京: 中国标准出版社, 2016.
    [26]
    国家铁路局. 铁路桥梁用结构钢: TB/T 3556—2020[S]. 北京: 中国铁道出版社, 2020.
    [27]
    Buck D. Copper in steel-the influence on corrosion[J]. Ind. Eng. Chem, 2002, 5(6):447-452.
    [28]
    Townsend H. Effects of alloying elements on the corrosion of steel in industrial atmospheres[J]. Corrosion, 2001, 57(6):497-501.
    [29]
    Copson H. Long-time atmospheric corrosion tests on low-alloy steels[J]. Proc. ASTM, 1960, 60:1-16.
    [30]
    Larrabee C. Corrosion resistance of high-strength low-alloy steels as influenced by composition and environment[J].Corrosion,1953,9(8):259-271.
    [31]
    Legault R, Leckie H. Effect of alloy composition on the atmospheric corrosion behavior of steels based on a statistical analysis of the larrabee-coburn data set[J]. ASTM Special Technical Publication, 1974, 558:334-347.
    [32]
    ASTM. Standard guide for estimating the atmospheric corrosion resistance of low-alloy steels: G101-04[S]. Pennsylvania: ASTM, 2020.
    [33]
    日本桥梁建设协会. 耐候性钢桥的适用性评价和防腐预防保护(日文)[M]. 东京:日本桥梁建设协会, 2009.
    [34]
    梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究[J]. 中国腐蚀与防护学报, 2005,25(1):2-7.
    [35]
    梁彩凤, 侯文泰. 碳钢及低合金钢8年大气暴露腐蚀研究[J]. 腐蚀科学与防护技术, 1995(3):183-186.
    [36]
    梁彩凤, 侯文泰. 钢的大气腐蚀预测[J]. 中国腐蚀与防护学报, 2006(3):3129-3135.
    [37]
    The Highways Agency. Weathering steel for highway structures: BD 7/81[S]. Birmingham:The Highways Agency, 1981.
    [38]
    李彬洋,刘晓光,郭辉,等.桥梁用耐候钢环境-材料适应性评价标准综述[J].铁道建筑,2023,63(12):69-76.
    [39]
    ASTM. Standard practice for characterization of atmospheric test sites: G92-2020[S]. Pennsylvania:ASTM, 2020.
    [40]
    ASTM. Standard practice for measurement of time-of-wetness on surfaces exposed to wetting conditions as in atmospheric corrosion testing: G84-2020[S]. Pennsylvania:ASTM, 2020.
    [41]
    刘涛,王胜民,侯云波,等.耐候钢表面锈层稳定化研究现状[J].表面技术,2018,47(10):240-248.
    [42]
    Federal Highway Administration. High performance steel designers’ guide. 2nd[EB/OL]. [1989-10-01]. https://www.fhwa.dot.gov/download/hpsguide.pdf, 2024.4.
    [43]
    车平,李军平,黄会强,等.高性能Q420qENH耐候桥梁钢焊接试验[J].焊接,2021(1):42-50,63

    -64.
    [44]
    彭宁琦,付贵勤,杨建华,等.Q690q耐候桥梁钢免预热焊接热影响区的组织性能[J].钢铁,2022,57(12):152-160.
    [45]
    熊祥江,史术华,范明,等.高性能桥梁钢Q690qENH组织性能[J].金属材料与冶金工程,2020,48(6):15-21.
    [46]
    闫博,胡会成,熊文名.高性能桥梁用钢Q420qE的研制开发[J].天津冶金,2021(5):34-37.
    [47]
    徐向军.桥梁钢结构焊接材料的应用与发展[J].金属加工(热加工),2016(8):23-24.
    [48]
    姜艳雯,杨洮林.高韧性耐候桥梁钢焊接材料研制[J].石河子科技,2021(3):14-15.
    [49]
    中国钢铁工业协会. 耐候钢锈层稳定性检测方法:T/CISA 192—2021[S]. 北京. 中国标准出版社, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (39) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return