Zeyu Zhang, Lijing Zeng, Hongxu Li, Luzhen Jiang, Yuedong Wang, Zhaoxin Hou, Weinan Li. Experimental Investigation on Mechanical Properties of Fire-Resistant Steel Q235FRB at Elevated Temperature[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 111-118. doi: 10.13206/j.gjgS24051601
Citation: Zeyu Zhang, Lijing Zeng, Hongxu Li, Luzhen Jiang, Yuedong Wang, Zhaoxin Hou, Weinan Li. Experimental Investigation on Mechanical Properties of Fire-Resistant Steel Q235FRB at Elevated Temperature[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 111-118. doi: 10.13206/j.gjgS24051601

Experimental Investigation on Mechanical Properties of Fire-Resistant Steel Q235FRB at Elevated Temperature

doi: 10.13206/j.gjgS24051601
  • Received Date: 2024-05-16
    Available Online: 2024-11-06
  • To investigate the mechanical properties of fire-resistant steel under elevated-temperature conditions, a steady-state method was used to conduct tensile experiments on standard specimens of fire-resistant steel Q235FRB. Based on the experimental results, stress-strain curves of fire-resistant steel Q235FRB under different temperature conditions were obtained, from which reduction factors for various mechanical performance parameters of fire-resistant steel (including elastic modulus, yield strength, and tensile strength) at elevated temperatures were obtained. The research results indicate that the strength parameters of fire-resistant steel Q235FRB (including elastic modulus, yield strength, and tensile strength) exhibit a negative correlation with temperature, and corresponding calculation models are proposed. When the temperature reaches 400 ℃, the degradation rate of strength parameters accelerates, with strength parameters reaching approximately 10% of room-temperature performance when the temperature rises to 800 ℃. The deformation parameter (ultimate elongation) of fire-resistant steel Q235FRB decreases first and then increases with the increase of temperature. Through comparative analysis, it is demonstrated that the mechanical and high-temperature resistance properties of fire-resistant steel Q235FRB surpass those of equivalent-grade ordinary steel, show casing promising application prospects.
  • [1]
    余香林,石永久,彭耀光,等.新型耐火耐候钢材高温力学性能与本构模型研究[J].工程力学,2023,40(3):201-212.
    [2]
    张泽宇,李红旭,赵国川,等.耐火钢结构应用研究现状与发展趋势[C]//2022年工业建筑学术交流会论文集(下册).北京:2022.
    [3]
    李红旭.耐火钢材料不同温度下力学性能研究[D].石家庄:河北科技大学,2020.
    [4]
    Qiang X H, Jiang X, Bijlaard F, et al. Mechanical properties and design recommendations of very high strength steel S960 in fire[J]. Engineering Structures, 2016, 112: 60-70.
    [5]
    Ranawaka T, Mahendran M. Experimental study of the mechanical properties of light gauge cold-formed steels at elevated temperatures[J]. Fire Safety Journal, 2019, 44 (2): 219-229.
    [6]
    Kankanamge N D, Mahendran M. Mechanical properties of cold-formed steels at elevated temperatures[J]. Thin-Walled Structures, 2017, 49 (1): 26-44.
    [7]
    Choi I R, Chung K S, Kim D H. Thermal and mechanical properties of high-strength structural steel HSA800 at elevated temperatures[J]. Materials & Design, 2016, 63: 544-551.
    [8]
    Chiew S P, Zhao M S, Lee C K. Mechanical properties of heat-treated high strength steel under fire/post-fire conditions[J]. Journal of Constructional Steel Research, 2015, 98: 12-19.
    [9]
    刘兵, 王卫永, 李国强, 等. 高强度Q460钢柱抗火性能研究[J]. 土木工程学报, 2012, 45(9): 19-26.
    [10]
    李国强,黄雷,张超.国产Q690高强钢高温下力学性能试验研究[J].建筑结构学报,2020,41(2):149-156.
    [11]
    范圣刚,刘平,石可,等.高温下与高温后Q550D高强钢材料力学性能试验[J].天津大学学报(自然科学与工程技术版),2019,52(7):680-689.
    [12]
    陈伟, 叶继红. G550高强度冷成型钢高温力学性能稳态试验研究[J]. 土木工程学报, 2012, 45(6): 33-42.
    [13]
    Zhang C T, Liu Y F, Huang C L. Fatigue performance of Q345 structural steel after natural cooling from elevated temperatures[J]. Journal of Constructional Steel Research,2021, 184, 106811.
    [14]
    蒋首超,陆立新,李国强,等.马钢耐火钢高温下材料性能试验研究[J].土木工程学报,2006(8):72-75.
    [15]
    楼国彪,费楚妮,王彦博,等.高强度耐火钢高温下力学性能试验研究[J].建筑结构学报,2022,43(9):128-137.
    [16]
    Chen J, Young B, Uy B. Behavior of high strength structural steel at elevated temperatures[J]. Journal of Structural Engineering, 2016, 7 (3): 331-363.
    [17]
    中华人民共和国国家质量监督检验检疫总局. 金属材料 拉伸试验 第1部分: 室温试验方法:GB/T 228.1—2021[S].北京: 中国标准出版社, 2021.
    [18]
    全国钢标准化技术委员会. 金属材料 高温拉伸试验方法: GB/T 4338—2006[S]. 北京: 中国标准出版社, 2006.
    [19]
    阮诗鹏,赵金城,宋振森,等.蔓延火灾下钢框架结构抗火性能试验研究[J].建筑结构学报,2022,43(9):103-114.
    [20]
    Nadjai A, Naveed A, Charlier M, et al. Large scale fire test: the development of a travelling fire in open ventilation conditions and its influence on the surrounding steel structure[J]. Fire Safety Journal, 2022, 130, 103575.
    [21]
    强旭红,毋凯冬,姜旭,等.高强钢S460高温力学性能研究与抗火设计建议[J].湖南大学学报(自然科学版),2018,45(11):37-45.
    [22]
    李国强, 陈凯, 蒋首超, 等. 高温下Q345钢的材料性能试验研究[J]. 建筑结构, 2001, 31(1): 53-55.
    [23]
    赵金城. 高温下钢材力学性能的试验研究[J].建筑结构,2000,30(4):26-28.
    [24]
    全国钢标准化技术委员会. 耐火结构用钢板及钢带: GB/T 28415—2012[S]. 北京: 中国标准出版社, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (72) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return