Volume 39 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Zeyu Zhang, Lijing Zeng, Hongxu Li, Luzhen Jiang, Yuedong Wang, Zhaoxin Hou, Weinan Li. Experimental Investigation on Mechanical Properties of Fire-Resistant Steel Q235FRB at Elevated Temperature[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 111-118. doi: 10.13206/j.gjgS24051601
Citation: Zeyu Zhang, Lijing Zeng, Hongxu Li, Luzhen Jiang, Yuedong Wang, Zhaoxin Hou, Weinan Li. Experimental Investigation on Mechanical Properties of Fire-Resistant Steel Q235FRB at Elevated Temperature[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 111-118. doi: 10.13206/j.gjgS24051601

Experimental Investigation on Mechanical Properties of Fire-Resistant Steel Q235FRB at Elevated Temperature

doi: 10.13206/j.gjgS24051601
  • Received Date: 2024-05-16
    Available Online: 2024-11-06
  • To investigate the mechanical properties of fire-resistant steel under elevated-temperature conditions, a steady-state method was used to conduct tensile experiments on standard specimens of fire-resistant steel Q235FRB. Based on the experimental results, stress-strain curves of fire-resistant steel Q235FRB under different temperature conditions were obtained, from which reduction factors for various mechanical performance parameters of fire-resistant steel (including elastic modulus, yield strength, and tensile strength) at elevated temperatures were obtained. The research results indicate that the strength parameters of fire-resistant steel Q235FRB (including elastic modulus, yield strength, and tensile strength) exhibit a negative correlation with temperature, and corresponding calculation models are proposed. When the temperature reaches 400 ℃, the degradation rate of strength parameters accelerates, with strength parameters reaching approximately 10% of room-temperature performance when the temperature rises to 800 ℃. The deformation parameter (ultimate elongation) of fire-resistant steel Q235FRB decreases first and then increases with the increase of temperature. Through comparative analysis, it is demonstrated that the mechanical and high-temperature resistance properties of fire-resistant steel Q235FRB surpass those of equivalent-grade ordinary steel, show casing promising application prospects.
  • loading
  • [1]
    余香林,石永久,彭耀光,等.新型耐火耐候钢材高温力学性能与本构模型研究[J].工程力学,2023,40(3):201-212.
    [2]
    张泽宇,李红旭,赵国川,等.耐火钢结构应用研究现状与发展趋势[C]//2022年工业建筑学术交流会论文集(下册).北京:2022.
    [3]
    李红旭.耐火钢材料不同温度下力学性能研究[D].石家庄:河北科技大学,2020.
    [4]
    Qiang X H, Jiang X, Bijlaard F, et al. Mechanical properties and design recommendations of very high strength steel S960 in fire[J]. Engineering Structures, 2016, 112: 60-70.
    [5]
    Ranawaka T, Mahendran M. Experimental study of the mechanical properties of light gauge cold-formed steels at elevated temperatures[J]. Fire Safety Journal, 2019, 44 (2): 219-229.
    [6]
    Kankanamge N D, Mahendran M. Mechanical properties of cold-formed steels at elevated temperatures[J]. Thin-Walled Structures, 2017, 49 (1): 26-44.
    [7]
    Choi I R, Chung K S, Kim D H. Thermal and mechanical properties of high-strength structural steel HSA800 at elevated temperatures[J]. Materials & Design, 2016, 63: 544-551.
    [8]
    Chiew S P, Zhao M S, Lee C K. Mechanical properties of heat-treated high strength steel under fire/post-fire conditions[J]. Journal of Constructional Steel Research, 2015, 98: 12-19.
    [9]
    刘兵, 王卫永, 李国强, 等. 高强度Q460钢柱抗火性能研究[J]. 土木工程学报, 2012, 45(9): 19-26.
    [10]
    李国强,黄雷,张超.国产Q690高强钢高温下力学性能试验研究[J].建筑结构学报,2020,41(2):149-156.
    [11]
    范圣刚,刘平,石可,等.高温下与高温后Q550D高强钢材料力学性能试验[J].天津大学学报(自然科学与工程技术版),2019,52(7):680-689.
    [12]
    陈伟, 叶继红. G550高强度冷成型钢高温力学性能稳态试验研究[J]. 土木工程学报, 2012, 45(6): 33-42.
    [13]
    Zhang C T, Liu Y F, Huang C L. Fatigue performance of Q345 structural steel after natural cooling from elevated temperatures[J]. Journal of Constructional Steel Research,2021, 184, 106811.
    [14]
    蒋首超,陆立新,李国强,等.马钢耐火钢高温下材料性能试验研究[J].土木工程学报,2006(8):72-75.
    [15]
    楼国彪,费楚妮,王彦博,等.高强度耐火钢高温下力学性能试验研究[J].建筑结构学报,2022,43(9):128-137.
    [16]
    Chen J, Young B, Uy B. Behavior of high strength structural steel at elevated temperatures[J]. Journal of Structural Engineering, 2016, 7 (3): 331-363.
    [17]
    中华人民共和国国家质量监督检验检疫总局. 金属材料 拉伸试验 第1部分: 室温试验方法:GB/T 228.1—2021[S].北京: 中国标准出版社, 2021.
    [18]
    全国钢标准化技术委员会. 金属材料 高温拉伸试验方法: GB/T 4338—2006[S]. 北京: 中国标准出版社, 2006.
    [19]
    阮诗鹏,赵金城,宋振森,等.蔓延火灾下钢框架结构抗火性能试验研究[J].建筑结构学报,2022,43(9):103-114.
    [20]
    Nadjai A, Naveed A, Charlier M, et al. Large scale fire test: the development of a travelling fire in open ventilation conditions and its influence on the surrounding steel structure[J]. Fire Safety Journal, 2022, 130, 103575.
    [21]
    强旭红,毋凯冬,姜旭,等.高强钢S460高温力学性能研究与抗火设计建议[J].湖南大学学报(自然科学版),2018,45(11):37-45.
    [22]
    李国强, 陈凯, 蒋首超, 等. 高温下Q345钢的材料性能试验研究[J]. 建筑结构, 2001, 31(1): 53-55.
    [23]
    赵金城. 高温下钢材力学性能的试验研究[J].建筑结构,2000,30(4):26-28.
    [24]
    全国钢标准化技术委员会. 耐火结构用钢板及钢带: GB/T 28415—2012[S]. 北京: 中国标准出版社, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (22) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return