Volume 40 Issue 3
Mar.  2025
Turn off MathJax
Article Contents
Lu Yang, Yuying Guo, Lin Chen, Fei Yin. Research Progress on Mechanical Properties of Ultra-High Strength (fy>690 MPa) Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(3): 1-19. doi: 10.13206/j.gjgS24042201
Citation: Lu Yang, Yuying Guo, Lin Chen, Fei Yin. Research Progress on Mechanical Properties of Ultra-High Strength (fy>690 MPa) Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(3): 1-19. doi: 10.13206/j.gjgS24042201

Research Progress on Mechanical Properties of Ultra-High Strength (fy>690 MPa) Steel Structures

doi: 10.13206/j.gjgS24042201
  • Received Date: 2024-04-22
    Available Online: 2025-06-07
  • Publish Date: 2025-03-25
  • Nowadays, the main steel structure design codes in various countries (regions) do not cover the design of steel structures using ultra-high-strength structural steel materials with yield strengths exceeding 690 MPa, which limits the engineering applications of such materials. This paper summarized the research achievements of domestic and foreign scholars on ultra-high-strength steel structures from five aspects: materials, residual stress distribution of sections, members, connections and joints, and structural systems. Specifically, it covered the following aspects: static tensile mechanical properties, cyclic constitutive behavior, toughness, and fire resistance of materials; residual stress distribution of sections; mechanical properties of axial compression members, flexural members, and combined compression and bending members; mechanical properties of welded joints, bolted joints, and beam-column connections; relevant design methods for steel structures and structural mechanical properties. The paper also provided prospects for further research on ultra-high-strength steel structures, aiming to provide a reference for the calculation methods and design theories of ultra-high-strength steel materials and promote their applications in the engineering field.
  • loading
  • [1]
    Li D,Huang Z,Uy B,et al. Slenderness limits for fabricated S960 ultra-high-strength steel and composite columns[J]. Journal of Constructional Steel Research,2019,159:109- 121.
    [2]
    施刚,班慧勇,石永久,等. 高强度钢材钢结构研究进展综述[J]. 工程力学,2013,30(1):1- 13.
    [3]
    Yang L,Yin F,Wang J,et al. Local buckling resistances of cold-formed high-strength steel SHS and RHS with varying corner radius[J]. Thin-Walled Structures,2022,172,108909.
    [4]
    Ban H Y,Shi G,Shi Y J,et al. Research progress on the mechanical property of high strength structural steels[J]. Advanced Materials Research,2011,250:640- 648.
    [5]
    中华人民共和国住房和城乡建设部. 高强钢结构设计标准:JGJ/T 483—2020[S]. 北京:中国建筑工业出版社,2020.
    [6]
    中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017—2017[S]. 北京:中国建筑工业出版社,2018.
    [7]
    British Standards Institution(BSI). Eurocode 3. design of steel structures:part 1-12:additional rules for the extension of EN 1993 up to steel grades S700:BS EN 1993-1-12[S]. London:BSI,2007.
    [8]
    American Institute of Steel Construction(AISC). Specification for structural steel buildings:ANSI/AI SC 360-16[S]. Chicago:AISC,2016.
    [9]
    Australian Standard Committee. Steel structures:AS 4100-1998[S]. reconfirmed 2016. Sydney:Australian Standard Committee,2016.
    [10]
    Li T J,Li G Q,Wang Y B. Residual stress tests of welded Q690 high-strength steel box-and H-sections[J]. Journal of Constructional Steel Research,2015,115:283- 289.
    [11]
    Feldmann M,Schillo N,Schaffrath S,et al. Rules on high strength steel[R]. Brussels:European Commission,2016.
    [12]
    Ma J L. Behaviour and design of cold-formed high strength steel tubular members[D]. Hong Kong:The University of Hong Kong,2016.
    [13]
    Yin F,Yang L,Xu K,et al. Tests,numerical study and design of Q1100 ultra-high strength steel welded I-section stub columns[J]. Engineering Structures,2022,269,114812.
    [14]
    徐克龙. 高强度钢材焊接工字形梁局部稳定性能及设计方法研究[D]. 北京:清华大学,2017.
    [15]
    刘希月. 基于微观机理的高强钢结构材料与节点的断裂性能研究[D]. 北京:清华大学,2015.
    [16]
    陈学森. 高强度钢材板式加强型梁柱节点抗震性能及设计方法[D]. 北京:清华大学,2018.
    [17]
    Ban H Y,Shi G,Shi Y J,et al. Experimental investigation of the overall buckling behaviour of 960 MPa high strength steel columns[J]. Journal of Constructional Steel Research,2013,88:256- 266.
    [18]
    Meng X,Gardner L. Behavior and design of normal and high-strength steel SHS and RHS columns[J]. Journal of Structural Engineering,2020,146(11),04020227.
    [19]
    Ferreira F J O,Tankova T,Carvalho H,et al. Experimental and numerical flexural buckling resistance of high strength steel columns and beam-columns[J]. Engineering Structures,2022,265,114414.
    [20]
    Meng X,Gardner L. Testing of hot-finished high strength steel SHS and RHS under combined compression and bending[J]. Thin-Walled Structures,2020,148,106262.
    [21]
    王杰,狄谨,张茜,等. Q 420~Q960钢材焊接箱形截面构件轴压整体稳定性能[J/OL]. 建筑结构学报,2023[ 2023-06-12]. https://doi.org/10.14006/j.jzjgxb.2022.0708.
    [22]
    彭奇. Q690高强钢焊接H形截面受弯构件的抗弯强度和转动能力研究[D]. 重庆:重庆大学,2018.
    [23]
    梁超. Q690钢焊接H形截面残余应力及其对轴压构件整体稳定性能影响研究[D]. 重庆:重庆大学,2021.
    [24]
    谷予. Q690钢焊接H形梁有两道侧向支撑时的整体稳定性能研究[D]. 重庆:重庆大学,2020.
    [25]
    朱希. 高强度结构钢材材料设计指标研究[D]. 北京:清华大学,2016.
    [26]
    Wang Y Z,Kanvinde A,Li G Q,et al. A new constitutive model for high strength structural steels[J]. Journal of Constructional Steel Research,2021,182,106646.
    [27]
    童乐为,王婕,牛立超,等. 高强度钢焊接H形截面构件残余应力分布试验研究[J]. 钢结构,2018,33(12):56- 62.
    [28]
    骆文泽. 超高强钢Q960E焊接性研究及焊接残余应力数值模拟[D]. 重庆:重庆大学,2022.
    [29]
    叶曦雨,聂诗东,陈振业,等. Q620与Q960箱形钢柱滞回试验对比分析[C]// 第31届全国结构工程学术会议论文集(第II册). 南宁:2022.
    [30]
    林错错. 高强度钢材焊接截面轴压构件局部稳定性能和设计方法[D]. 北京:清华大学,2012.
    [31]
    Javidan F,Heidarpour A,Zhao X L,et al. Fundamental behaviour of high strength and ultra-high strength steel subjected to low cycle structural damage[J]. Engineering Structures,2017,143:427- 440.
    [32]
    Lemaitre J,Chaboche J L. Mechanics of solid materials[M]. Cambridge:Cambridge University Press,1994.
    [33]
    Hu F,Shi G. Constitutive model for full-range cyclic behavior of high strength steels without yield plateau[J]. Construction and Building Materials,2018,162:596- 607.
    [34]
    Hai L T,Sun F F,Zhao C,et al. Experimental cyclic behavior and constitutive modeling of high strength structural steels[J]. Construction and Building Materials,2018,189:1264- 1285.
    [35]
    Wang Y Z,Kanvinde A,Li G Q,et al. A new constitutive model for high strength structural steels[J]. Journal of Constructional Steel Research,2021,182,106646.
    [36]
    Zhang Y,Wang Y Z,Yang L,et al. Experimental study on hysteretic behavior of Q1100 ultra-high strength steel[J]. Thin-Walled Structures,2023,182,110291.
    [37]
    武延民. 钢结构脆性断裂的力学机理及其工程设计方法研究[D]. 北京:清华大学,2004.
    [38]
    Langenberg P. Relation between design safety and Y/T ratio in application of welded high strength structural steels[C]// Proceedings of International Symposium on Applications of High Strength Steels in Modern Constructions and Bridges-Relationship of Design Specifications,Safety and Y/T Ratio. Beijing:2008.
    [39]
    Mori K,Lee E W,Frazier W E,et al. Effect of tempering and baking on the Charpy impact energy of hydrogen-charged 4340 steel[J]. Journal of Materials Engineering and Performance,2015,24:329- 337.
    [40]
    Tong L,Niu L,Jing S,et al. Low temperature impact toughness of high strength structural steel[J]. Thin-Walled Structures,2018,132:410- 420.
    [41]
    Wang Y Q,Liu X Y,Lin Y. Experimental study on impact toughness of 960 MPa high-strength steel and its butt weld at low temperature[J]. Advanced Steel Construction,2014,17:915- 919.
    [42]
    王元清,刘希月,石永久. 960 MPa高强度钢材对接焊缝的低温断裂韧性[J]. 材料研究学报,2013,27(3

    ):237- 246.
    [43]
    Gao J,Ju X,Zuo Z,et al. Experimental investigation on the low temperature fracture performance of Q690 steel for application to long-span high-speed railway bridges in Tibet harsh environment[J]. Structures,2022,44:503- 513.
    [44]
    付俊岩,东涛. 建筑和桥梁钢结构用钢屈强比问题的探讨[C]// 现代建筑与桥梁用高强度钢材应用技术国际研讨会论文集. 北京:2008.
    [45]
    欧阳辉,郑晓芬,程浩. 高强钢结构抗火性能研究现状[J]. 结构工程师,2022,38(6):202- 213.
    [46]
    Heidarpour A,Tofts N S,Korayem A H,et al. Mechanical properties of very high strength steel at elevated temperatures[J]. Fire Safety Journal,2014,64:27- 35.
    [47]
    强旭红,武念铎,姜旭,等. 超高强钢S960火灾后力学性能试验研究[J]. 同济大学学报(自然科学版),2016,44(7):1076- 1083.
    [48]
    李国强,黄雷,张超. 国产高强钢高温动态弹性模量试验研究[J]. 钢结构,2017,32(4):109- 112.
    [49]
    Azhari F,Heidarpour A,Zhao X L. On the use of Bernstain-Bézier functions for modelling the post-fire stress-strain relationship of ultra-high strength steel(grade 1200)[J]. Engineering Structures,2018,175:605- 616.
    [50]
    Azhari F,Heidarpour A,Zhao X L,et al. Post-fire mechanical response of ultra-high strength(grade 1200)steel under high temperatures:linking thermal stability and microstructure[J]. Thin-Walled Structures,2017,119:114- 125.
    [51]
    王卫永,张艳红,李翔. 高强Q960钢高温后力学性能试验研究[J]. 建筑材料学报,2022,25(1):102- 110.
    [52]
    Li D,Paradowska A,Uy B,et al. Residual stresses of box and I-shaped columns fabricated from S960 ultra-high-strength steel[J]. Constructional Steel Research,2020,166,105904- 12.
    [53]
    Su A,Sun Y,Liang Y,et al. Material properties and membrane residual stresses of S690 high strength steel welded I-sections after exposure to elevated temperatures[J]. Thin-Walled Structures,2020,152,106723- 16.
    [54]
    Tong L,Wang J,Xu G,et al. Experimental and numerical study on residual stress distributions in welded H-sections of high-strength steel[J]. Advances in Structural Engineering,2023,26(12):2248- 2264.
    [55]
    European Convention for Constructional Steelwork. European recommendations for steel construction[S]. Brussels:Steel Construction Institute,1976.
    [56]
    施刚,班慧勇,石永久,等. 端部带约束的超高强度钢材受压构件整体稳定受力性能[J]. 土木工程学报,2011,44(10):17- 25.
    [57]
    Shi G,Ban H Y,Bijlaard F S K. Tests and numerical study of ultra-high strength steel columns with end restraints[J]. Journal of Constructional Steel Research,2012,70:236- 247.
    [58]
    班慧勇,施刚,石永久. 不同等级高强钢焊接工形轴压柱整体稳定性能及设计方法研究[J]. 土木工程学报,2014,47(11):19- 28.
    [59]
    Su A,Sun Y,Liang Y,et al. Membrane residual stresses and local buckling of S960 ultra-high strength steel welded I-section stub columns[J]. Thin-Walled Structures,2021,161,107497.
    [60]
    班慧勇,施刚,石永久. 高强钢焊接箱形轴压构件整体稳定设计方法研究[J]. 建筑结构学报,2014(5):57- 64.
    [61]
    施刚,姜雪,周文静,等. 高强焊接圆钢管轴心受压整体稳定性能设计方法研究[J]. 建筑结构,2015,45(21):1- 8.
    [62]
    Kim D K,Lee C H,Han K H,et al. Strength and residual stress evaluation of stub columns fabricated from 800 MPa high-strength steel[J]. Journal of Constructional Steel Research,2014,102:111- 120.
    [63]
    朱高鸣. 高强钢圆管截面轴压短柱局部稳定性能研究[D]. 广州:华南理工大学,2019.
    [64]
    Meng X,Gardner L. Cross-sectional behaviour of cold-formed high strength steel circular hollow sections[J]. Thin-Walled Structures,2020,156,106822.
    [65]
    Wang F,Zhao O,Young B. Testing and numerical modelling of S960 ultra-high strength steel angle and channel section stub columns[J]. Engineering Structures,2020,204,109902.
    [66]
    Suzuki T,Ogawa T,Ikarashi K. A study on local buckling behavior of hybrid beams[J]. Thin-Walled Structures,1994,19(2/3/4):337- 351.
    [67]
    Beg D,Hladnik L. Slenderness limit of class 3 I cross-sections made of high strength steel[J]. Journal of Constructional Steel Research,1996,38(3):201- 217.
    [68]
    Earls C J. Influence of material effects on structural ductility of compact I-shaped beams[J]. Journal of Structural Engineering,2000,126(11):1268- 1278.
    [69]
    Sause R,Fahnestock L A. Strength and ductility of HPS-100W I-girders in negative flexure[J]. Journal of Bridge Engineering,2001,6(5):316- 323.
    [70]
    Lee C H,Han K H,Uang C M,et al. Flexural strength and rotation capacity of I-shaped beams fabricated from 800 MPa steel[J]. Journal of Structural Engineering,2013,139(6):1043- 1058.
    [71]
    徐克龙,石永久,李一昕. 高强度钢材受弯构件局部稳定设计方法对比[J]. 工业建筑,2016,46(9):136- 143.
    [72]
    Wang F,Zhao O,Young B. Flexural behaviour and strengths of press-braked S960 ultra-high strength steel channel section beams[J]. Engineering Structures,2019,200,109735.
    [73]
    Bartsch H,Eyben F,Pauli G,et al. Experimental and numerical investigations on the rotation capacity of high-strength steel beams[J]. Journal of Structural Engineering,2021,147(6),04021067.
    [74]
    McDermott J F. Plastic bending of A514 steel beams[J]. Journal of the Structural Division,1969,95(9):1851- 1871.
    [75]
    韩奇. Q690高强度钢材焊接H形截面梁承载性能和延性研究[D]. 重庆:重庆大学,2019.
    [76]
    Shokouhian M,Shi Y. Investigation of ductility in hybrid and high strength steel beams[J]. International Journal of Steel Structures,2014,14:265- 279.
    [77]
    Shokouhian M,Shi Y. Flexural strength of hybrid steel I-beams based on slenderness[J]. Engineering Structures,2015,93:114- 128.
    [78]
    丁阳,郭鹏. 高强钢焊接工字梁整体稳定性能分析[J]. 建筑结构,2015,45(21):25- 29.
    [79]
    张玥. Q690钢焊接H形截面梁整体稳定性能研究[D]. 重庆:重庆大学,2017.
    [80]
    耿锴亮. Q690钢焊接H形截面梁受弯稳定分析[D]. 重庆:重庆大学,2020.
    [81]
    Bradford M A,Liu X. Flexural-torsional buckling of high-strength steel beams[J]. Journal of Constructional Steel Research,2016,124:122- 131.
    [82]
    Le T,Bradford M A,Liu X,et al. Buckling of welded high-strength steel I-beams[J]. Journal of Constructional Steel Research,2020,168,105938.
    [83]
    张策,聂诗东,康少波,等. 高强钢梁侧向弯扭性能试验研究[C]// 第31届全国结构工程学术会议论文集(第II册). 南宁:2022.
    [84]
    Meng X,Gardner L. Testing,modelling and design of normal and high strength steel tubular beam-columns[J]. Journal of Constructional Steel Research,2021,183,106735.
    [85]
    叶惠. 高强钢焊接箱形截面压弯构件腹板局部稳定性能研究[D]. 西安:西安建筑科技大学,2020.
    [86]
    张伊洲. 高强钢焊接工字形截面压弯构件弯矩平面内局部稳定与整体稳定相关性研究[D]. 南京:东南大学,2018.
    [87]
    陈军,方有珍,蒋红云,等. 恒定轴压力下Q690高性能钢管抗弯性能的试验研究[J]. 工业建筑,2014,44(3):11- 18,54.
    [88]
    于志兵. Q690钢焊接工字形截面压弯构件平面内局部-整体相关屈曲研究[D]. 西安:西安建筑科技大学,2018.
    [89]
    王文城. Q690钢焊接工字形截面压弯构件板件局部稳定研究[D]. 西安:西安建筑科技大学,2020.
    [90]
    申红侠,徐凯凯,聂子钧. 高强钢焊接箱形截面压弯构件局部稳定试验研究[J]. 建筑结构学报,2023,44(1):96- 109.
    [91]
    申红侠,林啟邦,程浩. 高强钢焊接箱形截面双向压弯构件屈曲后强度设计方法研究[J]. 建筑钢结构进展,2022,24(1):24- 30.
    [92]
    Lopez M L,Blom A F,Trogen H,et al. Fatigue behavior of steels with strength levels between 350 and 900 MPa.- influence of post-weld treatments under spectrum loading[C]// Welded High Strength Steel Structures. London:1997.
    [93]
    Leitner M,Stoschka M,Schanner R,et al. Influence of high frequency peening on fatigue of high-strength steels[J]. FME Transactions,2012,40(3):99- 104.
    [94]
    Sun F F,Ran M M,Li G Q. et al. Experimental and numerical study of high-strength steel butt weld with softened HAZ[C]// Proceedings of the Institution of Civil Engineers Structures& Buildings. London:2018.
    [95]
    Ran M M,Sun F F,Li G Q,et al. Experimental study on the behavior of mismatched butt welded joints of high strength steel[J]. Journal of Constructional Steel Research,2019,153(2):196- 208.
    [96]
    Tong L,Niu L,Ren Z,et al. Experimental investigation on fatigue behavior of butt-welded high-strength steel plates[J]. Thin-Walled Structures,2021,165,107956.
    [97]
    Amraei M,Afkhami S,Javaheri V,et al. Mechanical properties and microstructural evaluation of the heat-affected zone in ultra-high strength steels[J]. Thin-Walled Structures,2020,157,107072.
    [98]
    Može P,Beg D. High strength steel tension splices with one or two bolts[J]. Journal of Constructional Steel Research,2010,66:1000- 1010.
    [99]
    Može P,Beg D. Investigation of high strength steel connections with several bolts in double shear[J]. Journal of Constructional Steel Research,2011,67:333- 347.
    [100]
    Može P,Beg D,Lopatič J. Net cross-section design resistance and local ductility of elements made of high strength steel[J]. Journal of Constructional Steel Research,2007,63:1431- 1441.
    [101]
    Cruz A,Simões R,Alves R. Slip factor in slip resistant joints with high strength steel[J]. Journal of Constructional Steel Research,2012,70:280- 288.
    [102]
    陈坤. 超500 MPa级高强钢常见摩擦面抗滑移系数试验研究[D]. 上海:同济大学,2017.
    [103]
    Wang Y B,Wang Y Z,Chen K,et al. Slip factor between shot blasted mild steel and high strength steel surfaces[J]. Journal of Constructional Steel Research,2020,168,105969.
    [104]
    Wang Y B,Lyu Y F,Wang Y Z,et al. Study on the slip and bearing behavior of bolted connection with high strength steel members[C]∥ International Conference on Engineering Research and Practice for Steel Construction. Hong Kong:2018.
    [105]
    Wang Y B,Wang Y Z,Chen K,et al. Slip factor of high strength steel with inorganic zinc-rich coating[J]. Thin-Walled Structures,2020,148,106595.
    [106]
    Lin X M,Yam M C H,Ke K,et al. Investigation of block shear strength of high strength steel bolted connections[J]. Journal of Constructional Steel Research,2022,196,107407.
    [107]
    胡方鑫,王湛. 高强钢T型件拉伸性能试验研究[C]// 第30届全国结构工程学术会议论文集(第Ⅲ册). 广州:2021.
    [108]
    乐毓敏. Q690高强钢T型连接极限变形能力研究[J]. 佳木斯大学学报(自然科学版),2013,31(2):199- 202.
    [109]
    司亚. Q690D高强钢- 12.9s超高强螺栓T型连接受力性能研究[D]. 重庆:重庆大学,2019.
    [110]
    Lyu Y F,Wang Y B,Li G Q,et al. Numerical analysis on the ultimate bearing resistance of single-bolt connection with high strength steels[J]. Journal of Constructional Steel Research,2019,153:118- 129.
    [111]
    吕一凡,李国强,王彦博. 超500MPa级高强钢承压型螺栓连接承载力试验研究[J]. 工程力学,2019,36(5

    ):200- 207,215.
    [112]
    Lyu Y F,Li G Q,Wang Y B. Behavior-based resistance model for bearing-type connection in high-strength steels[J]. Journal of Structural Engineering,2020,146(7),04020109.
    [113]
    孙飞飞,孙密,李国强,等. Q690高强钢端板连接梁柱节点抗震性能试验研究[J]. 建筑结构学报,2014,35(4):116- 124.
    [114]
    陆建锋. 高强度钢材钢框架梁柱节点抗震性能试验研究[D]. 南京:东南大学,2015.
    [115]
    徐明,陆建锋,李红兵,等. 考虑节点域加强的Q690GJ高强钢梁柱节点抗震性能试验研究[J]. 钢结构,2016(3):6- 13.
    [116]
    王磊,班慧勇,石永久,等. 基于微观断裂机理的高强钢框架梁柱节点抗震性能有限元分析[J]. 工程力学,2018,35(11):68- 78.
    [117]
    Coelho A M G,Bijlaard F S K. Experimental behaviour of high strength steel end-plate connections[J]. Journal of Constructional Steel Research,2007,63(9):1228- 1240.
    [118]
    Coelho A M G,Bijlaard F S K,Kolstein H. Experimental behaviour of high-strength steel web shear panels[J]. Engineering Structures,2009,31(7):1543- 1555.
    [119]
    Oh S H,Park H Y. A study to enhance the deformation capacity of beam-to-column connections using high strength steel having high yield ratio[J]. International Journal of Steel Structures,2016,16:73- 89.
    [120]
    胡阳阳,林旭川,吴开来,等. 带“保险丝”连接板的焊接高强钢梁柱节点抗震性能试验研究[J]. 工程力学,2017,34(增刊1):143- 148.
    [121]
    Lan X,Chan T M,Young B. Structural behaviour and design of chord plastification in high strength steel CHS X-joints[J]. Construction and Building Materials,2018,191:1252- 1267.
    [122]
    Chen X,Shi G. Cyclic tests on high strength steel flange-plate beam-to-column joints[J]. Engineering Structures,2019,186:564- 581.
    [123]
    竹内徹,大山翔也,石原直. 制振部材を付加した高強度鋼架構の繰返し変形性能-制振部材を付加した高強度鋼架構の耐震性能その 1[J]. 日本建築学会構造系論文集,2010,75:1671- 1679.
    [124]
    竹内徹,大山翔也,松井良太. 繰返し曲げを受ける高強度鋼梁端部の累積変形性能評価-制振部材を付加した高強度鋼架構の耐震性能その 2[J]. 日本建築学会構造系論文集,2011,76:695- 702.
    [125]
    中井政義,中村豊,前田祥三,等. 高強度鋼を用いた巨大地震に対する主架構無損傷設計法の提案[J]. 日本建築学会構造系論文集,2011,76:1443- 1451.
    [126]
    中井政義,津田和明,真瀬伸治,等. 高強度鋼を用いた構造システムの実大静的載荷試験による性能検証[J]. 日本建築学会構造系論文集,2013,78:1007- 1016.
    [127]
    Silva A T,Rebelo C,Silva L S,et al. Seismic performance of dual steel concentrically braced frames[C]// Proceedings of the 15th World Conference on Earthquake Engineering. Lisbo:2012.
    [128]
    胡方鑫. 高强度钢材钢框架抗震性能及设计方法研究[D]. 北京:清华大学,2016.
    [129]
    石一雄. 高强度钢材钢框架抗震设计分析[D]. 北京:清华大学,2019.
    [130]
    Shakil S,Lu W,Puttonen J. Behaviour of plane frames of high strength steel in fire[J]. Ce/Papers-Proceedings in Civil Engineering,2017,1(2/3):2534- 2543.
    [131]
    刘美景,陈美合,于光明,等. 卷边C形截面不锈钢柱畸变屈曲直接强度法[J]. 建筑钢结构进展,2023,25(5):70- 74.
    [132]
    郑小猛. H型截面铝合金轴压构件的连续强度设计方法研究[D]. 重庆:重庆大学,2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (168) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return