Volume 40 Issue 6
Jun.  2025
Turn off MathJax
Article Contents
Zhijian Yang, Xing Guo, Wenzhi Zuo, Kaiyu Wang, Zhuangzhuang Li. A Whole Process Finite Element Analysis of the Construction of an Open Steel Structure Glass Dome in an University[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(6): 25-32. doi: 10.13206/j.gjgS24030301
Citation: Zhijian Yang, Xing Guo, Wenzhi Zuo, Kaiyu Wang, Zhuangzhuang Li. A Whole Process Finite Element Analysis of the Construction of an Open Steel Structure Glass Dome in an University[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(6): 25-32. doi: 10.13206/j.gjgS24030301

A Whole Process Finite Element Analysis of the Construction of an Open Steel Structure Glass Dome in an University

doi: 10.13206/j.gjgS24030301
  • Received Date: 2024-03-03
    Available Online: 2025-09-16
  • Publish Date: 2025-06-25
  • This article conducted numerical simulation research on the entire construction process of the steel structure dome project in a new campus of a college. The stress situation of the grid structure during the construction process was analyzed, and the stress and deformation at key positions were monitored, in order to provide a theoretical basis for the construction of open steel structure glass domes and ensures construction safety. This article used the life and death element method to numerically simulate the installation and unloading process of fish belly support, circular truss, and temporary support in dome structures, and devided the entire process into three parts: fish belly support installation, circumferential truss installation, and construction unloading. By comparing and analyzing the different installation methods of fish belly support, it was found that if sequential installation was used, there will be significant lateral displacement in the structure, which is prone to instability and damage. Therefore, in construction and installation, a central symmetric method should be adopted, with minimal deformation of the top pressure ring and overall lateral deformation of the structure, showing good stability. The main manifestation of structural deformation is vertical displacement, with a maximum vertical displacement of the top pressure ring reaching 24.5 mm, and the maximum vertical displacement of the circular truss reaching 28.65 mm. The maximum lateral displacement of the dome structure was only 15 mm, and after the installation of the sixth group of fish belly support, the maximum lateral displacement began to decrease. After the installation of the three sets of fish belly support, the maximum bending stress and combined stress appeared at the top pressure ring, and the stress value increased rapidly. The bending moment at the welding point between the temporary support and the top pressure ring also increased sharply. After the installation of all fish belly support and circumferential truss, the maximum combined stress was 141.4 MPa, which is far from reaching the yield stress of the steel. The maximum lateral displacement of the dome structure was only 9 mm, less than 1/400 of the temporary support height. The construction unloading adopted a graded unloading mode, with each level unloading 3mm downward.During the unloading process, the deformation of the members in the dome structure showed a linear trend. Therefore, the unloading method selected in this article was reasonable. After the temporary support removal was completed, the structure transformed from the stress state of the temporary support system to the free stress state of the structure. The dome structure showed good stability throughout the whole construction process.
  • loading
  • [1]
    Kawaguchi M,Abe M,Hatato T,et al. On a structural system“suspen-dome”system[C]//Proc. of IASS Symposium. Istanbul:1993.
    [2]
    Basu P C,Gupchup V N. Safety evaluation of rehabilitation of delaminated containment dome[J]. Nuclear Engineering and Design,2003,228(1):195-205.
    [3]
    秦亚丽. 弦支穹顶结构施工方法研究和施工过程模拟分析[D]. 天津:天津大学,2006.
    [4]
    葛家琪,张国军,王树. 弦支穹顶预应力施工过程仿真分析[J]. 施工技术,2006,35(12):10-13.
    [5]
    张爱林,黄冬明,张传成,等. 弦支穹顶施工全过程分析[J]. 工业建筑,2007,37(4):56-59.
    [6]
    熊炜. 大跨度弦支穹顶结构的静力特性及施工仿真分析[D]. 广州:华南理工大学,2013.
    [7]
    刘慧娟,罗永峰,杨绿峰. 弦支穹顶结构施工技术及施工全过程模拟方法[J]. 土木建筑与环境工程,2010,32(5):142-148.
    [8]
    刘红波,陈志华,牛犇. 弦支穹顶结构施工过程数值模拟及施工监测[J]. 建筑结构学报,2012,33(12):79-84.
    [9]
    罗永峰,叶智武,陈晓明,等. 空间钢结构施工过程测关键参数及测点布置研究[J]. 建筑结构学报,2014,35(11):108-115.
    [10]
    张海霞,李帼昌,张德冰. 钢结构建筑工业化建造施工与安装技术评价体系研究[J]. 钢结构,2016,31(2):109-113.
    [11]
    张玉轩. 复杂构造焊接空心球承载力及节点刚度研究[D]. 天津:天津大学,2019.
    [12]
    邱先伟,严仁章,文强,等. 弦支穹顶结构体系权重分析[J]. 建筑结构,2022,52(1):663-667.
    [13]
    闫翔宇,巩昊,陈志华,等. H型钢弦支穹顶结构弹塑性稳定性分析[J]. 空间结构,2022,28(3):40-48.
    [14]
    鲍敏,司波,向新岸. 天全体育馆刚性屋面索穹顶施工技术研究和应用[J]. 建筑结构,2023,53(增刊2):1784-1789.
    [15]
    刘占省,徐瑞龙,武晓凤. 中国煤炭交易中心索穹顶施工过程监测研究[J]. 建筑结构,2013,43(12):29-32.
    [16]
    刘月军,张永坡,邓应平,等. 弦支穹顶监测方案[J]. 天津建设科技,2017,27(4):39-41.
    [17]
    王毅飞,罗晓群,李建全,等. 基于结构健康监测的大直径球体高层支撑钢结构 施工全过程性能评估[J]. 建筑钢结构进展,2024,26(3):80-88.
    [18]
    任瑛楠,谷志旺,苗峰. 历史建筑穹顶结构安全智能监测评估技术研究[J]. 数字建造,2023,45(3):561-564.
    [19]
    王金荣,王秀丽,苟宝龙,等. 大型复杂体育馆钢结构吊装过程温度影响分析与现场监测研究[J]. 工业建筑,2023,53(8):96-101.
    [20]
    刘哲,郭旗,梁鹏,等. 大跨度环形钢结构卸载方案[J]. 建筑技术,2024,55(1):25-30.
    [21]
    汤东婴,魏晓斌,孙正华,等. 空间钢桁架结构卸载施工模拟及监测技术应用研究[J]. 施工技术(中英文),2023,52(14):17-22.
    [22]
    黄韬睿,吴晶晶,邓旭洋,等. 卢赛尔体育场钢结构卸载应力及变形监测技术研究与应用[J]. 空间结构,2024,30(1):47-54.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (50) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return