Citation: | Yanni Liu, Wei Zhao, Hanshen Chen, Shuo Lyu, Wei Zhang. A Bolt Loosening Detection Algorithm for Steel Bridges Based on the Hourglass Network[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(2): 56-62. doi: 10.13206/j.gjgS24022901 |
[1] |
郭珍珠,赵伟.公路钢桥高强度螺栓松动检测技术研究进展[C]//中国钢结构协会结构稳定与疲劳分会第17届(ISSF-2021)学术交流会暨教学研讨会论文集.西安:2021.
|
[2] |
蔡红梅,张转芳,张光利.基于图像处理的螺栓松动智能监测方法研究[J].计算机仿真, 2015, 32(10):94-96
,359.
|
[3] |
周靖,刘煜,霍林生.基于机器视觉的螺栓松动旋转角度测量[J].机械设计与研究, 2021, 37(4):159-162
,75.
|
[4] |
Cha Y J, You K, Choi W. Vision-based detection of loosened bolts using the Hough transform and support vector machines[J]. Automation in Construction, 2016, 71:181-188.
|
[5] |
Ramana L, Choi W, Cha Y J. Fully automated vision-based loosened bolt detection using the Viola-Jones algorithm[J]. Structural Health Monitoring, 2019, 18(2):422-434.
|
[6] |
Zhao X, Zhang Y, Wang N. Bolt loosening angle detection technology using deep learning[J]. Structural Control and Health Monitoring, 2019, 26(1), e2292.
|
[7] |
Zhang Y, Sun X, Loh K J, et al. Autonomous bolt loosening detection using deep learning[J]. Structural Health Monitoring, 2020, 19(1):105-122.
|
[8] |
Huynh T C. Vision-based autonomous bolt-looseness detection method for splice connections:design, lab-scale evaluation, and field application[J]. Automation in Construction, 2021, 124, 103591.
|
[9] |
张伟,钱沄涛.引入全局约束的精简人脸关键点检测网络[J].信号处理, 2019, 35(3):507-515.
|
[10] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Chicago:2016.
|
[11] |
Ioffe S, Szegedy C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the International Conference on Machine Learning. Boston:2015.
|
[12] |
Khan A H, Cao X, Li S, et al. BAS-ADAM:an ADAM based approach to improve the performance of beetle antennae search optimizer[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(2):461-471.
|
[13] |
Dong X, Yu S I, Weng X, et al. Supervision-by-registration:an unsupervised approach to improve the precision of facial landmark detectors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City:2018.
|
[14] |
Lyu J, Shao X, Xing J, et al. A deep regression architecture with two-stage re-initialization for high performance facial landmark detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:2017.
|