Volume 39 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
Guojun Sun, Taiyan Qin, Jinzhi Wu, Qiang Luo, Weidong Sun. Study on Axial Compression Performance of H-Type Bending-Torsion Aluminum Alloy Member Without Ribs[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(9): 34-42. doi: 10.13206/j.gjgS24012901
Citation: Guojun Sun, Taiyan Qin, Jinzhi Wu, Qiang Luo, Weidong Sun. Study on Axial Compression Performance of H-Type Bending-Torsion Aluminum Alloy Member Without Ribs[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(9): 34-42. doi: 10.13206/j.gjgS24012901

Study on Axial Compression Performance of H-Type Bending-Torsion Aluminum Alloy Member Without Ribs

doi: 10.13206/j.gjgS24012901
  • Received Date: 2024-01-29
    Available Online: 2024-09-19
  • In order to study the axial compression of H-shaped bending-torsion aluminum alloy members, an axial compression test was carried out on an H-shaped flexural-torsional aluminum alloy member, which was obtained by sweeping and twisting the H-shaped section around a section of arc. The cross section design size is H350×200×10×12, the bending arc radius is 2 850 mm, the span is 2 936 mm, the torsion angle is 26°, the material is 6061-T6 aluminum alloy profile, and the boundary condition is hinged at both ends. Firstly, in order to obtain the accurate geometric model of H-type bending and torsion aluminum alloy member, the whole component is scanned in three dimensions, and the cloud point data of the outer surface of the component are obtained. By comparing the cloud point data with the ideal geometric model, it is found that most of the overall geometric deviation is controlled within 3 mm, and the thickness and width of the upper flange of the component are less than the ideal geometric model to varying degrees. Then, the load-displacement curve, load-strain curve and failure mode of the component are obtained through the axial compression test. The ultimate bearing capacity of the H-type bending-torsion aluminum alloy member is 313 kN, and finally the lower flange of the member and the web near the lower flange appear serious buckling deformation. Finally, the accurate geometric model of the component is obtained according to the inverse processing of the three-dimensional scanning data. On this basis, the finite element model is established by ABAQUS. The stress development and failure mechanism of the component are obtained by numerical analysis. The failure mode, load-displacement curve and load-strain curve of the aluminum alloy component are in good agreement with the test, which verifies the reliability of the finite element simulation. Before reaching the ultimate bearing capacity, the lower flange and web of the component are subjected to large-scale compression and yield into plasticity, and the failure mode of the component is flexural-torsional buckling failure.
  • loading
  • [1]
    郭小农,沈祖炎,李元齐,等.国产结构用铝合金材料本构关系及物理力学性能研究[J].建筑结构学报, 2007, 28(6):110-117.
    [2]
    杨联萍,姚念亮,邱枕戈,等.铝合金轴心受压杆件的稳定系数研究[J].建筑结构,2001,31(2):28-30.
    [3]
    郭小农,沈祖炎,李元齐,等.铝合金轴心受压构件理论和试验研究[J].建筑结构学报,2007,28(6):118-128.
    [4]
    郭小农,沈祖炎,李元齐,等.铝合金受弯构件理论和试验研究[J].建筑结构学报,2007,28(6):129-135

    ,146.
    [5]
    郭小农,沈祖炎,李元齐,等.铝合金偏心受压构件理论和试验研究[J].建筑结构学报,2007,28(6):136-146.
    [6]
    张铮,张其林. H型铝合金压弯构件平面外稳定承载力试验及理论研究[J].建筑结构,2010,40(6):110-113

    ,102.
    [7]
    纪晗,熊世树,黄丽婷.大型焊接空心球节点的多轴加载有限元分析与足尺试验[J].工程力学,2010,27(4):173-178.
    [8]
    中华人民共和国建设部.铝合金结构设计规范:GB 50429-2007[S].北京:中国计划出版社,2007.
    [9]
    吴金志,宋子魁,孙国军,等.铝合金单层网壳结构的工程应用与研究进展[J].建筑结构,2021,51(17):129-140.
    [10]
    李明,陈扬骥,钱若军,等.圆管形铝合金轴心压杆稳定系数的试验研究[J].空间结构,2000,6(1):59-64

    ,53.
    [11]
    罗永峰,季跃,芮渊,等.铝合金结构轴心压杆稳定性研究[J].同济大学学报(自然科学版),2001,29(4):401-405.
    [12]
    Zhu J H, Young B. Experimental investigation of aluminum alloycircular hollow section columns[J]. Engineering Structures,2006,28(2):207-215.
    [13]
    Zhu J H, Young B. Numerical investigation and design of aluminum alloy circular hollow section columns[J]. Thin-Walled Structures, 200846(12):1437-1449.
    [14]
    Zhu J H, Young B. Aluminum alloy tubular columns-part I:finiteelement modeling and test verification[J]. Thin-Walled Structures, 2006, 44(9):961-968.
    [15]
    Young B. Aluminum alloy tubular columns-part II:parametricstudy and design using direct strength method[J]. Thin-WalledStructures, 2006, 44(9):969-985.
    [16]
    王元清,王中兴,胡晓光,等. 7A04高强铝合金L形截面柱轴压整体稳定性能试验研究[J].建筑结构学报,2016,37(6):174-182.
    [17]
    冯然,沈成栋,朱伍,等.铝合金矩形开孔柱轴压性能试验研究[J].建筑结构,2018,48(19):71-76.
    [18]
    胡晓光,程永锋,陈宣宇,等.国产701铝合金L形轴压构件承载性能研究[J].建筑钢结构进展,2021,23(11):63-71.
    [19]
    郑莲琼,陶忠,韩林海.圆钢管混凝土受压曲杆的力学性能研究[J].工业建筑,2006,36(11):23-26

    ,41.
    [19]
    陈敏,郑莲琼,郑永乾,等.圆钢管混凝土曲杆抗弯性能研究[J].钢结构,2017,32(9):52-56.
    [21]
    郭小农,计丽艳,李政宁,等.弯曲铝合金方管的轴压性能试验研究[J].同济大学学报(自然科学版),2023,51(8):1199-1208.
    [22]
    中华人民共和国国家质量监督检验检疫总局.金属材料拉伸试验第1部分:室温试验方法:GB/T 228. 1-2021[S].北京:中国标准出版社,2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (44) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return