Yingying Zhang, Ziang Zhao, Junhao Xu, Bin Yang, Longjie Cui, Qingsong Lin, Jun Xu. Research on Carbon Emission Accounting and Emission Reduction Strategy of the Whole Life Cycle of Architectural Membrane Structure[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(9): 43-51. doi: 10.13206/j.gjgS24011501
Citation: Yingying Zhang, Ziang Zhao, Junhao Xu, Bin Yang, Longjie Cui, Qingsong Lin, Jun Xu. Research on Carbon Emission Accounting and Emission Reduction Strategy of the Whole Life Cycle of Architectural Membrane Structure[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(9): 43-51. doi: 10.13206/j.gjgS24011501

Research on Carbon Emission Accounting and Emission Reduction Strategy of the Whole Life Cycle of Architectural Membrane Structure

doi: 10.13206/j.gjgS24011501
  • Received Date: 2024-01-15
    Available Online: 2024-09-19
  • Membrane structure has the advantages of green environmental protection and sustainable development, and is an important research direction for China to achieve energy conservation and emission reduction in the field of buildings. There are no studies on carbon trace tracking, carbon emission accounting, and carbon emission factor statistics of building membrane structures at home and abroad. Based on the above background, this study aims to propose a calculation strategy for the carbon emissions of the whole life cycle of building membrane structures and analyze the key factors affecting emissions. By adopting a comprehensive carbon emission assessment method, combined with Life Cycle Assessment (LCA) and carbon source tracking calculation, the whole life cycle of a typical building membrane structure was studied in detail, and carbon emission calculation models at different stages were established to calculate the carbon emissions at each stage. The results show that the carbon emissions generated in the production stage of the membrane structure project are 8 621.61 kgCO2e, accounting for 79.75%, which is the main source of carbon emissions in the whole life cycle of the structure, followed by the construction stage, accounting for 16.53%, and the transportation stage and service dismantling stage accounted for a small proportion; It is suggested that the membrane structure should further optimize the production process in the production stage, adopt energy-saving technology and equipment, and renewable energy to reduce carbon emissions in the production process of materials. This study provides an important data reference for the carbon accounting of membrane structures, and provides important support for the high-quality and sustainable development of membrane structures.
  • [1]
    张其林.膜结构在我国的应用回顾和未来发展[J].建筑结构, 2019, 49(19):55-64.
    [2]
    薛素铎.中国空间结构的近期发展与工程实践(英文)[J].钢结构(中英文), 2020, 35(7):1-16.
    [3]
    张毅刚.从国外近年来的应用与研究看膜结构的发展[J].钢结构, 2013, 28(11):1-9.
    [4]
    武岳,杨庆山,沈世钊.膜结构分析理论研究现状与展望[J].工程力学, 2014, 31(2):1-14.
    [5]
    张营营,张其林,徐俊豪,等.现代织物类膜材料力学性能研究进展[J].钢结构(中英文), 2024,39(2):1-19.
    [6]
    中国工程建设标准化协会.膜结构技术规程:CECS 158:2015[S].北京:中国计划出版社, 2015.
    [7]
    郭宇翔,胡建辉,陈务军.极地极昼和低温环境下新型充气膜结构建筑热性能研究[C]//第二十三届全国现代结构工程学术研讨会论文集. 2023:52-55.
    [8]
    王宁睿,张福,吴明儿.气肋式膜结构及其应用[J].钢结构(中英文), 2024,39(2):20-29.
    [9]
    中国建筑科学研究院.建筑碳排放计算标准:GB/T 51366-2019[S].北京:中国建筑工业出版社,2019.
    [10]
    李庆伟,岳清瑞,金红伟,等.双碳背景下钢结构碳排放研究进展[J].建筑结构, 2023, 53(17):1-7

    ,36.
    [11]
    李庆伟,陈振明,岳清瑞,等.钢结构制造全过程碳排放与碳减排研究[J].建筑结构, 2023, 53(17):8-13.
    [12]
    乔兰,邓乃夫,李庆文,等.公路工程建设阶段全生命周期碳排放智能估算方法[J].工程科学学报, 2023, 45(12):2173-2186.
    [13]
    王琳,杨木言,高钰强.黄土隧道施工阶段碳排放计算与分析[J].环境工程, 2023, 41(10):99-107

    ,172.
    [14]
    于晓涵,李秀领,马锐,等.基于LCA理论的装配式高延性再生微粉混凝土结构碳排放研究[J/OL].材料导报,2023[2023-12-12] http://kns.cnki.net/kcms/detail/50.

    1078.TB.20231211.1002.008.html.
    [15]
    贾兆琪,杨璐,及炜煜,等.基于生命周期评价的钢结构碳排放计算模型研究[J].工业建筑, 2023, 53(增刊1):301-308,319.
    [16]
    曹西,缪昌铅,潘海涛.基于碳排放模型的装配式混凝土与现浇建筑碳排放比较分析与研究[J].建筑结构,2021,51(增刊2):1233-1237.
    [17]
    赵彦革,孙倩,韦婉,等.建筑结构设计对碳排放的影响研究[J].建筑结构, 2023, 53(17):19-23.
    [18]
    齐亚楠,邓万军.基于LCA的高速公路施工期碳排放量化边界界定[J].中国公路, 2023(5):88-92.
    [19]
    赵晨曦.涤纶增强FEVE建筑用膜结构材料的研发及力学性能研究[D].上海:东华大学, 2018.
    [20]
    陈超,薄艾,刘亚运,等.建筑碳排放量计算方法发展历程[J].工程质量,2023,41(5):60-65.
    [21]
    朱聪聪.玻璃纤维-PTFE建筑膜结构材料的工艺优化及性能研究[D].上海:东华大学, 2013.
    [22]
    刘涛,王楠,许熙博,等.纤维增强复合材料废弃物在土木工程的回收再利用现状[J].再生资源与循环经济, 2023, 16(8):26-33.
    [23]
    Shuaib N A, Mativenga P T, Kazie J, et al. Resource efficiencyand composite waste in UK supply chain[J]. Procedia CIRP,2015, 29:662-667.
  • Relative Articles

    [1]Genshu Tong. Seismic Actions on Buildings with Short and Intermediate Periods[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(2): 71-75. doi: 10.13206/j.gjgS24050620
    [2]Ningrui Wang, Fu Zhang, Minger Wu. Air-Inflated Rib Membrane Structure and Its Applications[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(2): 20-29. doi: 10.3724/j.gjgS23072902
    [3]Lijun Wang, Jinpeng Tan, Ming Wang. Conception of Structural Seismic Design Based on Double Carbon Goals[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(10): 32-41. doi: 10.13206/j.gjgs23072802
    [4]Zhaoxin Hou, Chao Gong, Jinlin Chen, Shuang Wang, Zhaoxiang Liu. Fully Prefabricated and Assembled Modular Buildings and Their Structural Design Strategies[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(10): 49-58. doi: 10.13206/j.gjgS23083102
    [5]Heng Kou, Qianrui Chen, Yu Song, Wenkai Chen, Peihong Chi. Dynamic Response Analysis of Steel Structure Based on the Combination of Vibration Reduction and Isolation[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(8): 17-25. doi: 10.13206/j.gjgs21111802
    [6]Qinghua Han, Ming Jing, Yan Lu. Seismic Isolation and Vibration Reduction System of Large-Span Spatial Structures-A Review[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(7): 17-28. doi: 10.13206/j.gjgSE20041901
  • Cited by

    Periodical cited type(1)

    1. 陈卓异,杨宇,李传习,曾振海,曾剑波. 基于临界距离理论的弧形切口疲劳寿命研究. 钢结构(中英文). 2021(10): 1-6 . 本站查看

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.4 %FULLTEXT: 16.4 %META: 81.0 %META: 81.0 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 40.0 %其他: 40.0 %San Lorenzo: 0.5 %San Lorenzo: 0.5 %北京: 2.1 %北京: 2.1 %南京: 1.5 %南京: 1.5 %南通: 0.5 %南通: 0.5 %台州: 0.5 %台州: 0.5 %吉林: 0.5 %吉林: 0.5 %嘉兴: 0.5 %嘉兴: 0.5 %天津: 1.5 %天津: 1.5 %常州: 0.5 %常州: 0.5 %平顶山: 0.5 %平顶山: 0.5 %广州: 1.0 %广州: 1.0 %廊坊: 0.5 %廊坊: 0.5 %张家口: 9.2 %张家口: 9.2 %杭州: 1.5 %杭州: 1.5 %武汉: 1.0 %武汉: 1.0 %沈阳: 0.5 %沈阳: 0.5 %济南: 0.5 %济南: 0.5 %湖州: 0.5 %湖州: 0.5 %漯河: 2.1 %漯河: 2.1 %石家庄: 0.5 %石家庄: 0.5 %福州: 1.0 %福州: 1.0 %芒廷维尤: 22.6 %芒廷维尤: 22.6 %芝加哥: 2.1 %芝加哥: 2.1 %衢州: 0.5 %衢州: 0.5 %西宁: 5.1 %西宁: 5.1 %运城: 1.0 %运城: 1.0 %遵义: 0.5 %遵义: 0.5 %郑州: 0.5 %郑州: 0.5 %长春: 0.5 %长春: 0.5 %其他San Lorenzo北京南京南通台州吉林嘉兴天津常州平顶山广州廊坊张家口杭州武汉沈阳济南湖州漯河石家庄福州芒廷维尤芝加哥衢州西宁运城遵义郑州长春

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (158) PDF downloads(5) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return