Zengmei Qiu Zixuan Ye Guochang Li Runze Liu, . Finite Element Analysis on the Concrete-Filled Square Steel Tubular Pure Bending Members Encased with CFRP Profile Under Cyclic Loading[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 29-37. doi: 10.13206/j.gjgS23102102
Citation: Zengmei Qiu Zixuan Ye Guochang Li Runze Liu, . Finite Element Analysis on the Concrete-Filled Square Steel Tubular Pure Bending Members Encased with CFRP Profile Under Cyclic Loading[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 29-37. doi: 10.13206/j.gjgS23102102

Finite Element Analysis on the Concrete-Filled Square Steel Tubular Pure Bending Members Encased with CFRP Profile Under Cyclic Loading

doi: 10.13206/j.gjgS23102102
  • Received Date: 2023-10-21
    Available Online: 2024-08-16
  • Carbon fiber reinforced polymer (CFRP) has the characteristics of high-strength and good corrosion resistance. Encased I-shaped CFRP profile into concrete-filled square steel tubular structure (CFRP-CFSST) forming a new-typed composite member can not only improve the mechanical properties of the member, but also reduce the material consumption, the dead weight of the structure and the cross-sectional size of the member. It is more suitable for super high-rise, large-span and heavy-load structures. As a critical lateral force-resisting member in structures, CFST often determines the seismic performance of the whole structure when subjected to an earthquake, which is directly related to the safety of people's lives and property. At present, the relevant design codes and standards around the world are not suitable for the seismic design of new composite members, so it is necessary to carry out in-depth research on its seismic performance.
    In this paper, finite element analysis software, ABAQUS, was used to study the seismic performance of the flexural behavior of CFRP-CFSST pure bending members. Firstly, considering the accuracy and applicability, the finite element model was verified with the existing literature, and a large number of refined models of CFRP-CFSST pure bending members were established based on the verified model. Then, on this basis, the whole process of stress analysis and stress analysis of each component at characteristic points were carried out based on the typical member. Finally, the effects of concrete compressive strength, steel yield strength and steel ratio on the flexural capacity and energy dissipation capacity of CFRP-CFSST pure bending members were studied.
    The simulation results indicated that the load-displacement envelope curves of the CFRP-CFSST pure bending member can be defined as three stages: elastic stage, elastoplastic stage and descending stage. Through the whole process analysis of typical members, in the elastic stage and elastoplastic stage, the load is mainly borne by the steel tube compared to the core concrete and I-shaped CFRP profiles. In the descending section, the load-bearing ratio of the CFRP profile increases, which shows that the encased CFRP profile can effectively improve the bearing capacity and ductility of members in the later loading stage. Therefore, compared with ordinary CFST members, the better tensile performance of CFRP profile efficiently improves the flexural performance of new composite members. Based on the parametric analysis results, the steel ratio has a significant effect on the bearing capacity and energy dissipation capacity of CFRP-CFSST members. When the steel tube thickness increases from 4 mm to 7 mm with an increment of 1 mm, the flexural bearing capacity of CFRP-CFSST members increases by 13. 83%, 8. 99% and 9. 10% respectively, which shows that a 5 mm steel tube thickness is most economic and the cumulative energy dissipation capacities increased by about 16. 57% on average. The steel tube is the main component that bears pure flexural load in the whole loading process, and the change in its strength also has a great influence on the hysteretic behavior of the members. When the steel strength increases from Q235 to Q420, the flexural bearing capacity of the members rises by about 30. 13%, the cumulative energy dissipation increases by about 12. 45%, and the flexural bearing capacity increases linearly with the increasing strength. The compressive strength of core concrete has a minor influence on the bearing capacity and energy dissipation capacity of members, and with the increase of concrete strength, the increase of flexural bearing capacity gradually decreases. When it is increased from C30 to C60, its cumulative energy dissipation capacities only increase by about 3. 44% . Therefore, compared with ordinary CFST members, CFRP-CFSST members have a better seismic performance, and most economic measures recommended are to improve the bearing capacity of new composite members by increasing the steel yield strength or steel ratio.
  • [1]
    韩林海.钢管混凝土结构:理论与实践[M]. 3版.北京:科学出版社,2016.
    [2]
    丁发兴,许云龙,王莉萍,等.钢-混凝土组合结构抗震性能研究进展[J].钢结构(中英文),2023,38(12):1-26.
    [3]
    钟善桐,张文福,屠永清,等.钢管混凝土结构抗震性能的研究[J].建筑钢结构进展,2002(2):3-15.
    [4]
    Yang S L, Zhang L, Zhang J W, et al. Seismic behavior of concrete-filled wide rectangular steel tubular (CFWRST) stub columns[J/OL]. Journal of Constructional Steel Research, 2022, 196[2022-07-07]. https://doi.org/10.1016/j.jcsr.2022.107402.
    [5]
    金浏,梁健,李冬,等.结构尺寸对方钢管混凝土短柱抗震性能影响的试验研究[J].工程力学, 2023, 40(4):35-45.
    [6]
    徐超,李家富,丁发兴,等.增强约束钢管混凝土框架-核心筒结构抗震性能[J].钢结构(中英文),2023,38(12):39-47.
    [7]
    Han L H, Huang H, Tao Z, et al. Concrete-filled double skin steel tubular (CFDST) beam-columns subjected to cyclic bending[J]. Engineering Structures, 2006, 28(12):1698-1714.
    [8]
    Huang H, Han L H, Tao Z, et al. Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns[J]. Journal of Constructional Steel Research, 2010, 66(4):542-555.
    [9]
    黄宏,朱琪,陈梦成,等.方中空夹层钢管混凝土压弯扭构件试验研究[J].土木工程学报. 2016, 49(3):91-97.
    [10]
    史艳莉,纪孙航,王文达,等.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究[J].土木工程学报, 2022, 55(1):75-88.
    [11]
    朱美春,刘建新,王清湘.钢骨-方钢管高强混凝土柱抗震性能试验研究[J].土木工程学报, 2011, 44(7):55-63.
    [12]
    李云云,闻洋,杨德山.钢骨-钢管混凝土柱抗震性能的影响因素[J].沈阳建筑大学学报(自然科学版), 2016, 32(4):628-634.
    [13]
    杨德山.钢骨-钢管混凝土柱抗震性能试验研究[J].钢结构, 2015, 30(11):10-13.
    [14]
    Zeng J J, Liang S D, Yan Z G, et al. Seismic behavior of FRPconcrete-steel double skin tubular columns with a rib-stiffened Q690 steel tube and high-strength concrete[J/OL]. Thin-Walled Structures. 2022, 175[2023-03-26]. https://doi.org/10.1016/j.tws.2022.109127.
    [15]
    刘明学,钱稼茹. FRP-混凝土-钢双壁空心管柱抗震性能试验[J].土木工程学报, 2008, 41(3):29-36.
    [16]
    Xiao Y, He W H, Choi K. Confined concrete-filled tubular columns[J]. Journal of Structural Engineering, 2005, 131(3):488-497.
    [17]
    Wang Q L, Yu L F, Peng K, et al. Hysteretic behavior of specimens of circular concrete-filled CFRP-steel tubular beam-column[J]. Advances in Civil Engineering,2021, 2021:1-19.
    [18]
    王志滨,谢恩普,陈靖. CFRP-方钢管混凝土压弯构件的滞回性能[J].长安大学学报(自然科学版), 2014, 34(6):91-99.
    [19]
    李帼昌,朱振华,孙行,等.内置工字形CFRP型材的方钢管混凝土轴压长柱受力性能研究[J].建筑结构学报,2017,38(增刊1):226-232.
    [20]
    冯兴,李帼昌,杨志坚,等.内置工字形CFRP型材的方钢管混凝土中长柱双向偏压性能研究[J].建筑钢结构进展,2021, 23(8):32-42.
    [21]
    刘典奇.内置工字形CFRP型材方钢管混凝土纯弯构件力学性能研究[D].沈阳:沈阳建筑大学, 2019.
    [22]
    李威.圆钢管混凝土柱-钢梁外环板式框架节点抗震性能研究[D].北京:清华大学, 2011.
    [23]
    刘威.钢管混凝土局部受压时的工作机理研究[D].福州:福州大学, 2005.
    [24]
    Tsai S W, Wu E M. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1):58-80.
    [25]
    Li G C, Qiu Z M, Yang Z J, et al. Seismic performance of high strength concrete filled high strength square steel tubes under cyclic pure bending[J]. Advanced Steel Construction, 2020, 16(2):112-123.
    [26]
    Du G F, Zhang J, Li Y, et al. Experimental study on hysteretic model for L-shaped concrete-filled steel tubular column subjected to cyclic loading[J/OL]. Thin-Walled Structures, 2019, 144[2019-07-08]. https://doi.org/10.1016/j.tws.2019.106278.
    [27]
    Yan L S, Wei X, Wen D W, et al. Mechanical behaviour of circular steel-reinforced concrete-filled steel tubular members under pure bending loads[J]. Structures, 2020, 25:670-682.
    [28]
    袁辉辉,吴庆雄,陈宝春,等.平缀管式等截面钢管混凝土格构柱抗震性能试验与有限元分析[J].工程力学, 2016, 33(10):226-235.
  • Relative Articles

    [1]Ke Zou, Wei Bao, Songyan Li, Xutao Xue, Fangping Xiao, Jiaopeng Fang. Research on Seismic Performance of Semi-Rigid Steel Frames with Corrugated Steel Plate Shear Walls[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(2): 10-20. doi: 10.13206/j.gjgS24092004
    [2]Mingliang Zhang, Hao Chen, Qiliang Wang. Study on Tensile Performance of Square Tubular Column-Column Joints of Modular Steel Structure with Bidirectional Bolt Connection[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(8): 20-28. doi: 10.13206/j.gjgS23062701
    [3]Jun Zou, Bing Shao, Zunsheng Xing, Qixiao Yu, Jiahui Cui, Huajiao Xu. Research on Seismic Performance of a Steel Frame Structure with Flat Steel Tubular Column and X-Type Brace[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(6): 14-21. doi: 10.13206/j.gjgS23071902
    [4]Yiling Chen, Jinliang Jiang, Jingzhong Tong. Research on Lateral Stiffness of Embedded Wall Board Steel Frame Structure[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(11): 1-9. doi: 10.13206/j.gjgS22110501
    [5]Jiansen Feng, Zexuan Sun, Yun Zou, Chengquan Wang. Finite Element Analysis of Axial Compression Behavior of Steel Tubular-Corrugated Steel Plate Confined Concrete Composite Column[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(8): 14-21. doi: 10.13206/j.gjgS23041202
    [6]Shuai Wu, Haisheng Liu, Gang Liu, Chao Xie, Jinxin Xu, Xujia Lin. Finite Element Simulation Analysis of Unloading Method of Space Tube Truss Structure[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(9): 25-29. doi: 10.13206/j.gjgS22061007
    [7]Qingqing Xiong, Jiahui Qian, Zhihua Chen. Research Progress on Mechanical Properties of Concrete-Filled Steel Tube Members Under Corrosive Environment[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(7): 1-19. doi: 10.13206/j.gjgs22041501
    [8]Weijia Xu, Xiaomei Ning, Ruoqiang Feng, Penghui Xu. Research on Lateral Performance of New Type Cold-Formed Steel Framed Shear Walls with Steel Sheathing and Gypsum Board[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 38-46. doi: 10.13206/j.gjgS20050201
    [9]Jing Li, Wucai Lu. Finite Element Simulation and Parametric Analysis of Composite Shear Walls with Steel Plates and Infill Concrete Under Axial Compression[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(9): 10-18. doi: 10.13206/j.gjgS20062202
    [10]Yongqiang Qiao, Taiyuan Guo, Qing Hu, Dongze Song. Finite Element Simulation Analysis of Lifting Point Arrangement and Support Unloading of Long-Span Roof Truss[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(7): 29-34. doi: 10.13206/j.gjgS20031801
    [11]Qiang Xu, Haowen Liu, Wentao Qiao, Chao Wang. Finite Element Analysis on Seismic Behavior of A New Prefabricated Corrugated Steel Plate and Polyurethane Composite Shear Wall[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(12): 1-8. doi: 10.13206/j.gjgS21051102
    [12]Dong Liu, Yongjiu Shi, Xianglin Yu, Chengliang Tu. Parametric Analyses on Lateral Performance About Modular Composite Shear Wall with Double Steel Plates and Infill Concrete[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(12): 43-49. doi: 10.13206/j.gjgS20120701
    [13]Chao Gong, Hao Kang, Zhaoxin Hou, Yuyin Wang, Weiqiao Liang, Guowei Zhang. Theoretical Analysis and Experimental Study on Bending Behavior of Steel-Concrete Composite Flat Beams[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(6): 41-49. doi: 10.13206/j.gjgS20051201
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.2 %FULLTEXT: 16.2 %META: 79.7 %META: 79.7 %PDF: 4.1 %PDF: 4.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.0 %其他: 11.0 %Australia: 0.2 %Australia: 0.2 %China: 1.3 %China: 1.3 %上海: 1.9 %上海: 1.9 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %佛山: 0.2 %佛山: 0.2 %佳木斯: 0.2 %佳木斯: 0.2 %兰州: 0.2 %兰州: 0.2 %北京: 3.2 %北京: 3.2 %北海道: 0.2 %北海道: 0.2 %南京: 0.7 %南京: 0.7 %南平: 0.2 %南平: 0.2 %南昌: 0.4 %南昌: 0.4 %南通: 1.1 %南通: 1.1 %南阳: 0.2 %南阳: 0.2 %台州: 0.6 %台州: 0.6 %合肥: 0.7 %合肥: 0.7 %嘉兴: 0.7 %嘉兴: 0.7 %大连: 0.4 %大连: 0.4 %天津: 1.3 %天津: 1.3 %宜宾: 0.2 %宜宾: 0.2 %常州: 0.4 %常州: 0.4 %常德: 0.2 %常德: 0.2 %广州: 0.4 %广州: 0.4 %庆阳: 0.2 %庆阳: 0.2 %张家口: 3.9 %张家口: 3.9 %德州: 0.2 %德州: 0.2 %德阳: 0.2 %德阳: 0.2 %成都: 0.9 %成都: 0.9 %扬州: 0.2 %扬州: 0.2 %新乡: 0.6 %新乡: 0.6 %无锡: 0.7 %无锡: 0.7 %昆明: 0.6 %昆明: 0.6 %杭州: 0.7 %杭州: 0.7 %格兰特县: 0.4 %格兰特县: 0.4 %武汉: 0.7 %武汉: 0.7 %毕节: 0.2 %毕节: 0.2 %汉中: 0.2 %汉中: 0.2 %沧州: 0.2 %沧州: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.4 %济南: 0.4 %深圳: 0.7 %深圳: 0.7 %温州: 0.6 %温州: 0.6 %滁州: 0.2 %滁州: 0.2 %滨州: 0.4 %滨州: 0.4 %漯河: 1.9 %漯河: 1.9 %烟台: 0.4 %烟台: 0.4 %焦作: 0.2 %焦作: 0.2 %珠海: 0.2 %珠海: 0.2 %盐城: 0.6 %盐城: 0.6 %眉山: 0.2 %眉山: 0.2 %红河: 0.2 %红河: 0.2 %绍兴: 0.4 %绍兴: 0.4 %芒廷维尤: 6.0 %芒廷维尤: 6.0 %芜湖: 0.4 %芜湖: 0.4 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %茂名: 0.2 %茂名: 0.2 %衡水: 0.2 %衡水: 0.2 %衢州: 0.2 %衢州: 0.2 %西宁: 43.3 %西宁: 43.3 %西安: 0.2 %西安: 0.2 %西雅图: 0.2 %西雅图: 0.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.4 %运城: 0.4 %郑州: 1.3 %郑州: 1.3 %重庆: 0.6 %重庆: 0.6 %长春: 0.2 %长春: 0.2 %长沙: 1.3 %长沙: 1.3 %长治: 0.4 %长治: 0.4 %阳泉: 0.9 %阳泉: 0.9 %马鞍山: 0.9 %马鞍山: 0.9 %驻马店: 0.4 %驻马店: 0.4 %龙岩: 0.2 %龙岩: 0.2 %其他AustraliaChina上海伊利诺伊州佛山佳木斯兰州北京北海道南京南平南昌南通南阳台州合肥嘉兴大连天津宜宾常州常德广州庆阳张家口德州德阳成都扬州新乡无锡昆明杭州格兰特县武汉毕节汉中沧州洛阳济南深圳温州滁州滨州漯河烟台焦作珠海盐城眉山红河绍兴芒廷维尤芜湖芝加哥苏州茂名衡水衢州西宁西安西雅图贵阳运城郑州重庆长春长沙长治阳泉马鞍山驻马店龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (82) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return